SPOJ 220 Relevant Phrases of Annihilation

SPOJ_220

    这个题目和POJ_1743很像,POJ那个题是去找最长的不重叠的重复字串,而这个题目是要求找到一个字符串,使得其是各个字符串的最长的不重叠的重复字串。

    因此,整体的思路还是基本相同的。首先要将若干字符串合并成一个字符串并用分隔符隔开。然后二分所求字符串的长度k,并顺序遍历height数组,将相邻的值不小于k的height[]分成一组,对于组内的后缀按首字符所在的字符串的不同,一一去判断sa[]的最大值和最小值之差是否不小于k,如果不小于k就说明在这个字符串中存在长度为k的不重叠的且至少出现两次的子串。

#include<stdio.h>
#include<string.h>
#define MAXD 100100
#define INF 0x3f3f3f3f
char b[MAXD];
int N, M, f[MAXD], r[MAXD], sa[MAXD], rank[MAXD], height[MAXD], wa[MAXD], wb[MAXD], ws[MAXD], wv[MAXD];
int left[15], right[15];
void init()
{
int i, j, k = 0, x = 128;
scanf("%d", &N);
for(i = 0; i < N; i ++)
{
scanf("%s", b);
for(j = 0; b[j]; j ++, k ++)
{
r[k] = b[j];
f[k] = i;
}
r[k ++] = x ++;
}
M = k - 1;
r[M] = 0;
}
int cmp(int *p, int x, int y, int l)
{
return p[x] == p[y] && p[x + l] == p[y + l];
}
void da(int n, int m)
{
int i, j, p, *x = wa, *y = wb, *t;
for(i = 0; i < m; i ++)
ws[i] = 0;
for(i = 0; i < n; i ++)
++ ws[x[i] = r[i]];
for(i = 1; i < m; i ++)
ws[i] += ws[i - 1];
for(i = n - 1; i >= 0; i --)
sa[-- ws[x[i]]] = i;
for(j = p = 1; p < n; j *= 2, m = p)
{
for(p = 0, i = n - j; i < n; i ++)
y[p ++] = i;
for(i = 0; i < n; i ++)
if(sa[i] >= j)
y[p ++] = sa[i] - j;
for(i = 0; i < n; i ++)
wv[i] = x[y[i]];
for(i = 0; i < m; i ++)
ws[i] = 0;
for(i = 0; i < n; i ++)
++ ws[wv[i]];
for(i = 1; i < m; i ++)
ws[i] += ws[i - 1];
for(i = n - 1; i >= 0; i --)
sa[-- ws[wv[i]]] = y[i];
for(t = x, x = y, y = t, x[sa[0]] = 0, i = p = 1; i < n; i ++)
x[sa[i]] = cmp(y, sa[i - 1], sa[i], j) ? p - 1 : p ++;
}
}
void calheight(int n)
{
int i, j, k = 0;
for(i = 1; i <= n; i ++)
rank[sa[i]] = i;
for(i = 0; i < n; height[rank[i ++]] = k)
for(k ? -- k : 0, j = sa[rank[i] - 1]; r[i + k] == r[j + k]; k ++);
}
int calculate(int mid)
{
int j, cnt;
for(j = cnt = 0; j < N; j ++)
{
if(right[j] - left[j] >= mid)
++ cnt;
else
break;
}
if(cnt == N)
return 1;
else
return 0;
}
int check(int mid)
{
int i, j, k = 0, t;
for(i = 1; i <= M; i ++)
{
if(height[i] < mid)
{
if(k && calculate(mid))
return 1;
k = 0;
}
else
{
if(k == 0)
{
memset(left, 0x3f, sizeof(left));
memset(right, -1, sizeof(right));
t = f[sa[i - 1]];
left[t] = right[t] = sa[i - 1];
}
t = f[sa[i]];
if(sa[i] < left[t])
left[t] = sa[i];
if(sa[i] > right[t])
right[t] = sa[i];
k = 1;
}
}
if(k && calculate(mid))
return 1;
return 0;
}
void solve()
{
int i, j, k, min, max, mid;
da(M + 1, 200);
calheight(M);
min = 0, max = 10000;
for(;;)
{
mid = (min + max) / 2;
if(mid == min)
break;
if(check(mid))
min = mid;
else
max = mid;
}
printf("%d\n", mid);
}
int main()
{
int t;
scanf("%d", &t);
while(t --)
{
init();
solve();
}
return 0;
}


你可能感兴趣的:(ant)