POJ_3335
这个题目是我写的第一个半平面交的题目,之前总以为半平面交是个很高深的东西,但实际上真正去接触它时才发现它其实也并不复杂,搞ACM的过程中很多时候都是这样,因为自己的畏怯而不敢去接触一类新的算法、题目,算是又跨过了一个小门槛,继续努力啦!
对于半平面交的一些简明扼要的介绍可以参考这篇博客:http://blog.csdn.net/accry/article/details/6070621。此外,这篇博客上介绍的还有我敲出的程序都只是比较好理解的O(n^2)的求半平面交的算法,对于O(nlogn)的算法可以参考朱泽园的论文。
#include<stdio.h>
#include<string.h>
#define zero 1e-8
#define MAXD 310
#define INF 0x3f3f3f3f
struct point
{
double x, y;
}p[MAXD], wa[MAXD], wb[MAXD], *a, *b;
int N, P, na, nb;
double fabs(double x)
{
return x < 0 ? -x : x;
}
int dcmp(double x)
{
return fabs(x) < zero ? 0 : (x < 0 ? -1 : 1);
}
double det(double x1, double y1, double x2, double y2)
{
return x1 * y2 - x2 * y1;
}
void anticlock()
{
int i, j, k;
double s = 0;
point t;
for(i = 0; i < N; i ++)
s += det(p[i].x, p[i].y, p[i + 1].x, p[i + 1].y);
if(dcmp(s) < 0)
{
for(i = 1; i <= N - i; i ++)
t = p[i], p[i] = p[N - i], p[N - i] = t;
}
}
void init()
{
int i, j, k;
scanf("%d", &N);
for(i = 0; i < N; i ++)
scanf("%lf%lf", &p[i].x, &p[i].y);
p[N] = p[0];
anticlock();
}
void add(double x, double y)
{
b[nb].x = x, b[nb].y = y;
++ nb;
}
void cut(int k)
{
int i, j, nt;
double t1, t2, x, y;
point *t;
nb = 0;
for(i = 0; i < na; i ++)
{
t1 = det(p[k + 1].x - p[k].x, p[k + 1].y - p[k].y, a[i].x - p[k].x, a[i].y - p[k].y);
t2 = det(p[k + 1].x - p[k].x, p[k + 1].y - p[k].y, a[i + 1].x - p[k].x, a[i + 1].y - p[k].y);
if(dcmp(t1) >= 0)
add(a[i].x, a[i].y);
if(dcmp(t1) * dcmp(t2) < 0)
{
x = (fabs(t2) * a[i].x + fabs(t1) * a[i + 1].x) / (fabs(t1) + fabs(t2));
y = (fabs(t2) * a[i].y + fabs(t1) * a[i + 1].y) / (fabs(t1) + fabs(t2));
add(x, y);
}
}
t = a, a = b, b = t;
nt = na, na = nb, nb = nt;
a[na] = a[0];
}
void solve()
{
int i, j, k;
a = wa, b = wb;
na = 4;
a[0].x = -INF, a[0].y = -INF, a[1].x = INF, a[1].y = -INF, a[2].x = INF, a[2].y = INF, a[3].x = -INF, a[3].y = INF;
a[na] = a[0];
for(i = 0; i < N; i ++)
cut(i);
if(na == 0)
printf("NO\n");
else
printf("YES\n");
}
int main()
{
int t;
scanf("%d", &t);
while(t --)
{
init();
solve();
}
return 0;
}