在消息发送的过程中,涉及到了两个线程——main 线程和== Sender 线程==。在 main 线程中创建了一个双端队列 RecordAccumulator(32M内存)。main 线程将消息发送给 RecordAccumulator,Sender 线程不断从 RecordAccumulator 中拉取消息发送到 Kafka Broker。
sender从RecordAccumulator拉取数据以broker为key,要发往同一个broker的数据在一个请求队列中,默认每个broker节点最多缓存5个请求。
broker接收数据时的应答机制acks:
参数名称 | 描述 |
---|---|
bootstrap.servers | 生产者连接集群所需的 broker 地 址 清 单 。 例 如s1:9092,s2:9092,s3:9092,可以设置 1 个或者多个,中间用逗号隔开。注意这里并非需要所有的 broker 地址,因为生产者可以从给定的 broker里查找到其他 broker 信息。 |
key.serializer 和 value.serializer | 指定发送消息的 key 和 value 的序列化类型。一定要写全类名。 |
buffer.memory | RecordAccumulator 缓冲区总大小,默认 32m。 |
batch.size | 缓冲区一批数据最大值,默认 16k。适当增加该值,可以提高吞吐量,但是如果该值设置太大,会导致数据传输延迟增加。 |
linger.ms | 如果数据迟迟未达到 batch.size,sender 等待 linger.time之后就会发送数据。单位 ms,默认值是 0ms,表示没有延迟。生产环境建议该值大小为 5-100ms 之间。 |
acks | 0:生产者发送过来的数据,不需要等数据落盘应答。 1:生产者发送过来的数据,Leader 收到数据后应答。 -1(all):生产者发送过来的数据,Leader+和 isr 队列里面的所有节点收齐数据后应答。默认值是-1,-1 和all 是等价的。 |
max.in.flight.requests.per.connection | 允许最多没有返回 ack 的次数,默认为 5,开启幂等性要保证该值是 1-5 的数字。 |
retries | 当消息发送出现错误的时候,系统会重发消息。retries表示重试次数。默认是 int 最大值,2147483647。如果设置了重试,还想保证消息的有序性,需要设置MAX_IN_FLIGHT_REQUESTS_PER_CONNECTION=1否则在重试此失败消息的时候,其他的消息可能发送成功了。 |
retry.backoff.ms | 两次重试之间的时间间隔,默认是 100ms。 |
enable.idempotence | 是否开启幂等性,默认 true,开启幂等性。 |
compression.type | 生产者发送的所有数据的压缩方式。默认是 none,也就是不压缩。 支持压缩类型:none、gzip、snappy、lz4 和 zstd。 |
取决于应答级别
在生产环境中,acks=0很少使用;acks=1,一般用于传输普通日志,允许丢个别数据;acks=-1,一般用于传输和钱相关的数据,对可靠性要求比较高的场景。
数据完全可靠条件 = ACK级别设置为-1 + 分区副本大于等于2 + ISR里应答的最小副本数量大于等于2
参数名称 | 描述 |
---|---|
replica.lag.time.max.ms | ISR 中,如果 Follower 长时间未向 Leader 发送通信请求或同步数据,则该 Follower 将被踢出 ISR。该时间阈值,默认 30s。 |
auto.leader.rebalance.enable | 默认是 true。 自动 Leader Partition 平衡。 |
leader.imbalance.per.broker.percentage | 默认是 10%。每个 broker 允许的不平衡的 leader的比率。如果每个 broker 超过了这个值,控制器会触发 leader 的平衡。 |
leader.imbalance.check.interval.seconds | 默认值 300 秒。检查 leader 负载是否平衡的间隔时间。 |
log.segment.bytes | Kafka 中 log 日志是分成一块块存储的,此配置是指 log 日志划分 成块的大小,默认值 1G。 |
log.index.interval.bytes | 默认 4kb,kafka 里面每当写入了 4kb 大小的日志(.log),然后就往 index 文件里面记录一个索引。 |
log.retention.hours | Kafka 中数据保存的时间,默认 7 天。 |
log.retention.minutes | Kafka 中数据保存的时间,分钟级别,默认关闭。 |
log.retention.ms | Kafka 中数据保存的时间,毫秒级别,默认关闭。 |
log.retention.check.interval.ms | 检查数据是否保存超时的间隔,默认是 5 分钟。 |
log.retention.bytes | 默认等于-1,表示无穷大。超过设置的所有日志总大小,删除最早的 segment。 |
log.cleanup.policy | 默认是 delete,表示所有数据启用删除策略;如果设置值为 compact,表示所有数据启用压缩策略。 |
num.io.threads | 默认是 8。负责写磁盘的线程数。整个参数值要占总核数的 50%。 |
num.replica.fetchers | 副本拉取线程数,这个参数占总核数的 50%的 1/3 |
num.network.threads | 默认是 3。数据传输线程数,这个参数占总核数的50%的 2/3 。 |
log.flush.interval.messages | 强制页缓存刷写到磁盘的条数,默认是 long 的最大值,9223372036854775807。一般不建议修改,交给系统自己管理。 |
log.flush.interval.ms | 每隔多久,刷数据到磁盘,默认是 null。一般不建议修改,交给系统自己管理。 |
(1)创建一个要均衡的主题。
vim topics-to-move.json
{
"topics": [
{"topic": "first"}
],
"version": 1
}
(2)生成一个负载均衡的计划。
bin/kafka-reassign-partitions.sh --bootstrap-server s1:9092 --topics-to-move-json-file topics-to-move.json --broker-list "0,1,2,3" --generate
得到当前的副本分配和计划的副本分配,如下所示:
Current partition replica assignment
{“version”:1,“partitions”:[{“topic”:“first”,“partition”:0,“replicas”:[0,2,1],“log_dirs”:[“any”,“any”,“any”]},{“topic”:“first”,“partition”:1,“replicas”:[2,1,0],“log_dirs”:[“any”,“any”,“any”]},{“topic”:“first”,“partition”:2,“replicas”:[1,0,2],“log_dirs”:[“any”,“any”,“any”]}]}
Proposed partition reassignment configuration
{“version”:1,“partitions”:[{“topic”:“first”,“partition”:0,“replicas”:[2,3,0],“log_dirs”:[“any”,“any”,“any”]},{“topic”:“first”,“partition”:1,“replicas”:[3,0,1],“log_dirs”:[“any”,“any”,“any”]},{“topic”:“first”,“partition”:2,“replicas”:[0,1,2],“log_dirs”:[“any”,“any”,“any”]}]}
(3)创建副本存储计划(所有副本存储在broker0、broker1、broker2、broker3中)。
vim increase-replication-factor.json
内容为刚才生成的预计负载均衡计划(Proposed partition reassignment configuration)
(4)执行副本存储计划。
bin/kafka-reassign-partitions.sh --bootstrap-server s1:9092 --reassignment-json-file increase-replication-factor.json --execute
(5)验证副本存储计划。
bin/kafka-reassign-partitions.sh --bootstrap-server s1:9092 --reassignment-json-file increase-replication-factor.json --verify
(1)创建一个要均衡的主题,方法同上。
(2)创建执行计划
bin/kafka-reassign-partitions.sh --bootstrap-server s1:9092 --topics-to-move-json-file topics-to-move.json --broker-list "0,1,2" --generate
(3)创建副本存储计划(所有副本存储在broker0、broker1、broker2中)。
vim increase-replication-factor.json
内容为刚得到的副本存储计划,注意文件名的重复性。
(4)执行副本存储计划,方法同上。
(5)验证副本存储计划,方法同上。
在broker3上执行停止命令:
bin/kafka-server-stop.sh
Kafka 集群中有一个 broker 的 Controller 会被选举为 Controller Leader,负责管理集群broker 的上下线,所有 topic 的分区副本分配和 Leader 选举等工作。
Controller 的信息同步工作是依赖于 Zookeeper 的。
LEO(Log End Offset):每个副本的最后一个offset,LEO其实就是最新的offset + 1。
HW(High Watermark):所有副本中最小的LEO 。
(1) Follower发生故障后会被临时踢出ISR
(2) 这个期间Leader和Follower继续接收数据
(3)待该Follower恢复后,Follower会读取本地磁盘记录的上次的HW,并将log文件高于HW的部分截取掉,从HW开始向Leader进行同步。
(4)等该Follower的LEO大于等于该Partition的HW,即Follower追上Leader之后,就可以重新加入ISR了。
(1) Leader发生故障之后,会从ISR中选出一个新的Leader
(2)为保证多个副本之间的数据一致性,其余的Follower会先将各自的log文件高于HW的部分截掉,然后从新的Leader同步数据。
在生产环境中,每台服务器的配置和性能不一致,但是Kafka只会根据自己的代码规则创建对应的分区副本,就会导致个别服务器存储压力较大。所有需要手动调整分区副本的存储。
(1)创建副本存储计划。
以所有副本都制定存储到broker0、broker1中为例:
vim increase-replication-factor.json
{
"version":1,
"partitions":[{"topic":"three","partition":0,"replicas":[0,1]},
{"topic":"three","partition":1,"replicas":[0,1]},
{"topic":"three","partition":2,"replicas":[1,0]},
{"topic":"three","partition":3,"replicas":[1,0]}]
}
(2)执行副本存储计划。
bin/kafka-reassign-partitions.sh --bootstrap-server s1:9092 --reassignment-json-file increase-replication-factor.json --execute
(3)验证副本存储计划
bin/kafka-reassign-partitions.sh --bootstrap-server s1:9092 --reassignment-json-file increase-replication-factor.json --verify
Topic是逻辑上的概念,而partition是物理上的概念,每个partition对应于一个log文件,该log文件中存储的就是Producer生产的数据。Producer生产的数据会被不断追加到该log文件末端,为防止log文件过大导致数据定位效率低下,Kafka采取了分片和索引机制,将每个partition分为多个segment。每个segment包括:“.index”文件、“.log”文件和.timeindex等文件。这些文件位于一个文件夹下,该文件夹的命名规则为:topic名称+分区序号,例如:first-0。
顺序写入+稀疏索引保障了kafka的高吞吐量性能
Kafka 中默认的日志保存时间为 7 天,可以通过调整如下参数修改保存时间。
超过保存时间有两种处理方式,一种是delete删除,另一种是compact压缩。
如果一个 segment 中有一部分数据过期,一部分没有过期,则会等待所有数据过期后再删除。
compact日志压缩:对于相同key的不同value值,只保留最后一个版本。
这种策略只适合特殊场景,比如消息的key是用户ID,value是用户的资料,通过这种压缩策略,整个消息集里就保存了所有用户最新的资料。
零拷贝:Kafka的数据加工处理操作交由Kafka生产者和Kafka消费者处理。Kafka Broker应用层不关心存储的数据,所以就不用走应用层,传输效率高。
PageCache页缓存:Kafka重度依赖底层操作系统提供的PageCache功 能。当上层有写操作时,操作系统只是将数据写入PageCache。当读操作发生时,先从PageCache中查找,如果找不到,再去磁盘中读取。实际上PageCache是把尽可能多的空闲内存都当做了磁盘缓存来使用。
kafka有四种主流的分区分配策略:Range、RoundRobin、Sticky、CooperativeSticky,默认是Range+CooperativeStricky,可以同时使用多个分区分配策略。
本文总结自尚硅谷视频:kafka,仅作个人学习笔记使用。