神经网络入门(Neural Network)

神经网络是一种模拟人脑的神经网络以期能够实现类人工智能的机器学习技术。

一、前言

1、分类

神经网络最重要的用途是分类,为了让大家对分类有个直观的认识,先看几个例子:

  • 垃圾邮件识别:现在有一封电子邮件,把出现在里面的所有词汇提取出来,送进一个机器里,机器需要判断这封邮件是否是垃圾邮件。

  • 疾病判断:病人到医院去做了一大堆肝功、尿检测验,把测验结果送进一个机器里,机器需要判断这个病人是否得病,得的什么病。

  • 猫狗分类:有一大堆猫、狗照片,把每一张照片送进一个机器里,机器需要判断这幅照片里的东西是猫还是狗。

2、经典的神经网络结构

看一个经典的三个层次的神经网络,红色的是输入层,绿色的是输出层,紫色的是中间层(也叫隐藏层)。输入层有3个输入单元,隐藏层有4个单元,输出层有2个单元。

神经网络入门(Neural Network)_第1张图片

注意:结构图里的关键不是圆圈(代表神经元),而是连接线(代表神经元之间的连接)。每个连接线对应一个不同的权重(其值称为权值),这是需要训练得到的。

二、神经元

1、定义

人脑中的神经元形状可以用下图做简单的说明:

神经网络入门(Neural Network)_第2张图片

一个神经元通常具有多个树突,主要用来接受传入信息;而轴突只有一条,轴突尾端有许多轴突末梢可以给其他多个神经元传递信息。轴突末梢跟其他神经元的树突产生连接,从而传递信号。这个连接的位置在生物学上叫做“突触”。

2、结构

神经元模型是一个包含输入,输出与计算功能的模型。下图是一个典型的神经元模型:包含有3个输入,1个输出,以及2个计算功能。

神经网络入门(Neural Network)_第3张图片

连接是神经元中最重要的东西。每一个连接上都有一个权重。

一个神经网络的训练算法就是让权重的值调整到最佳,以使得整个网络的预测效果最好。

我们使用a来表示输入,用w来表示权值。一个表示连接的有向箭头可以这样理解:在初端,传递的信号大小仍然是a,端中间有加权参数w,经过这个加权后的信号会变成aw,因此在连接的末端,信号的大小就变成了aw。

如果我们将神经元图中的所有变量用符号表示,并且写出输出的计算公式的话,就是下图。

神经网络入门(Neural Network)_第4张图片

三. 单层神经网络(感知器)

1、结构

神经网络入门(Neural Network)_第5张图片

如果我们仔细看输出的计算公式,会发现这两个公式就是线性代数方程组。因此可以用矩阵乘法来表达这两个公式。

  例如,输入的变量是[a1,a2,a3]T(代表由a1,a2,a3组成的列向量),用向量a来表示。方程的左边是[z1,z2]T,用向量z来表示。

  系数则是矩阵W(2行3列的矩阵,排列形式与公式中的一样)。

  于是,输出公式可以改写成:

g(W * a) = z;

  这个公式就是神经网络中从前一层计算后一层的矩阵运算。

3、效果

感知器类似一个逻辑回归模型,可以做线性分类任务。

神经网络入门(Neural Network)_第6张图片

四、两层神经网络(多层感知器)

1、结构

例如ax(y)代表第y层的第x个节点。z1,z2变成了a1(2),a2(2)。下图给出了a1(2),a2(2)的计算公式。

神经网络入门(Neural Network)_第7张图片

神经网络入门(Neural Network)_第8张图片

我们使用向量和矩阵来表示层次中的变量。a(1),a(2),z是网络中传输的向量数据。W(1)和W(2)是网络的矩阵参数。如下图。

神经网络入门(Neural Network)_第9张图片

神经网络入门(Neural Network)_第10张图片

可以看出,偏置节点很好认,因为其没有输入(前一层中没有箭头指向它)。有些神经网络的结构图中会把偏置节点明显画出来,有些不会。一般情况下,我们都不会明确画出偏置节点。

在考虑了偏置以后的一个神经网络的矩阵运算如下:

g(W(1) * a(1) + b(1)) = a(2);

g(W(2) * a(2) + b(2)) = z;

  需要说明的是,在两层神经网络中,我们不再使用sgn函数作为函数g,而是使用平滑函数sigmoid作为函数g。我们把函数g也称作激活函数(active function)。

3、效果

与单层神经网络不同,理论证明,两层神经网络可以无限逼近任意连续函数。

神经网络入门(Neural Network)_第11张图片

可以看到,这个两层神经网络的决策分界是非常平滑的曲线,而且分类的很好。有趣的是,前面已经学到过,单层网络只能做线性分类任务。而两层神经网络中的后一层也是线性分类层,应该只能做线性分类任务。为什么两个线性分类任务结合就可以做非线性分类任务?

神经网络入门(Neural Network)_第12张图片

可以看到,输出层的决策分界仍然是直线。关键就是,从输入层到隐藏层时,数据发生了空间变换。也就是说,两层神经网络中,隐藏层对原始的数据进行了一个空间变换,使其可以被线性分类,然后输出层的决策分界划出了一个线性分类分界线,对其进行分类。

  这样就导出了两层神经网络可以做非线性分类的关键--隐藏层。联想到我们一开始推导出的矩阵公式,我们知道,矩阵和向量相乘,本质上就是对向量的坐标空间进行一个变换。因此,隐藏层的参数矩阵的作用就是使得数据的原始坐标空间从线性不可分,转换成了线性可分。

  两层神经网络通过两层的线性模型模拟了数据内真实的非线性函数。因此,多层的神经网络的本质就是复杂函数拟合。

4、训练

机器学习模型训练的目的,就是使得参数尽可能的与真实的模型逼近。具体做法是这样的。首先给所有参数赋上随机值。我们使用这些随机生成的参数值,来预测训练数据中的样本。样本的预测目标为yp,真实目标为y。那么,定义一个值loss,计算公式如下。

loss = (yp - y)2

  这个值称之为损失(loss),我们的目标就是使对所有训练数据的损失和尽可能的小。

  如果将先前的神经网络预测的矩阵公式带入到yp中(因为有z=yp),那么我们可以把损失写为关于参数(parameter)的函数,这个函数称之为损失函数(loss function)。下面的问题就是求:如何优化参数,能够让损失函数的值最小。

  此时这个问题就被转化为一个优化问题。一个常用方法就是高等数学中的求导,但是这里的问题由于参数不止一个,求导后计算导数等于0的运算量很大,所以一般来说解决这个优化问题使用的是梯度下降算法。梯度下降算法每次计算参数在当前的梯度,然后让参数向着梯度的反方向前进一段距离,不断重复,直到梯度接近零时截止。一般这个时候,所有的参数恰好达到使损失函数达到一个最低值的状态。

  在神经网络模型中,由于结构复杂,每次计算梯度的代价很大。因此还需要使用反向传播算法。反向传播算法是利用了神经网络的结构进行的计算。不一次计算所有参数的梯度,而是从后往前。首先计算输出层的梯度,然后是第二个参数矩阵的梯度,接着是中间层的梯度,再然后是第一个参数矩阵的梯度,最后是输入层的梯度。计算结束以后,所要的两个参数矩阵的梯度就都有了。

  反向传播算法可以直观的理解为下图。梯度的计算从后往前,一层层反向传播。前缀E代表着相对导数的意思。

神经网络入门(Neural Network)_第13张图片

你可能感兴趣的:(深度学习,神经网络,线性代数,机器学习)