r library car_Stata+R:Stata 与 R 等效命令备忘录

r library car_Stata+R:Stata 与 R 等效命令备忘录_第1张图片
作者:任建辉(山西财经大学)
邮箱:[email protected]

连享会-知乎推文列表


Note: 助教招聘信息请进入「课程主页」查看。

因果推断-内生性 专题 ⌚ 2020.11.12-15
主讲:王存同 (中央财经大学);司继春(上海对外经贸大学) 课程主页https://gitee.com/arlionn/YG | 微信版

http://qr32.cn/BlTL43 (二维码自动识别)

空间计量 专题 ⌚ 2020.12.10-13
主讲:杨海生 (中山大学);范巧 (兰州大学) 课程主页https://gitee.com/arlionn/SP | 微信版

https://gitee.com/arlionn/DSGE (二维码自动识别)


连享会最新专题直播

r library car_Stata+R:Stata 与 R 等效命令备忘录_第2张图片

1.引言

「左手 Stata,右手 Python / R」,精通一个,掌握一些。

该备忘录总结了常见的 Stata 计量经济分析命令,并提供它们在 R 中的等效命令与之对应。更多关于导入/清理数据、变量转换和其他基本命令可参考Hanck等(2019)的《Econometrics with R》,以及 Wickham和Grolemund(2017)的《R for Data Science》。本示例选自 wooldridge《计量经济学导论:现代观点》,其中 Stata 数据集的下载链接为datasets, R 数据集可直接通过安装 wooldridge 包来获取,更加的方便。除了特别说明外,所有 R 命令都源自基础R包。在其后的每小节中,我们都是分两部分代码段来展开,前一段为 stata 代码块,后一段为等效的 R 代码块。

特别申明:资料来源为 https://github.com/rstudio/cheatsheets

2.安装

注意:在stata中,一般主要依赖log文件来储存命令和结果输出,R却不然。在R中,通常使用由谢益辉编写的Rmarkdown语法创建R-markdown文件来捕获代码和结果输出。

stata代码块

ssc install outreg2 
//  安装outreg2包。注意,stata安装包不需要每次使用时调用
//  在R中每次使用相应的包,需要输入library(packages name)来调用

R代码块

install.packages("wooldridge") 
#install `wooldridge` package
data(package = "wooldridge") 
#list datasets in `wooldridge` package
load(wage1)                
#load `wage1` dataset into session
?wage1                        
#consult documentation on `wage1` dataset
连享会最新专题直播

3.基本绘图

基础绘图部分主要演示了直方图、散点图、散点图加拟合线以及分组箱线图,示例数据为 wage1

stata代码块

use http://fmwww.bc.edu/ec-p/data/wooldridge/wage1
hist(wage)                                       
//histogram of `wage`hist(wage), by(nonwhite)
scatter (wage edu)                              
//scatter plot of `wage` by `educ`
twoway (scatter wage educ) (lfit wage educ)     
//scatter plot with fitted line
graph box wage, by(nonwhite)                    
//boxplot of wage by `nonwhite`

R代码块

library(wooldridge)
// 其余部分R代码块的运行,都是提前加载wooldridge包,不再进一步重复。
hist(wage1$wage)                                 
# histogram of `wage``
plot(y = wage$1wage, x = wage1$educ)            
abline(lm(wage1$wage~wage1$educ),col=“red”)    
# add fitted line to scatterplot
boxplot(wage1$wage~wage1$nonwhite)               
# boxplot of `wage` by `nonwhite`

4.汇总数据

Stata的劣势是仅允许一个人每次使用一个数据集,在R中却可以同时调入多个数据集,因此必须在每个函数调用中指定。注意:R没有等同于Statacodebook的命令。在R中,安装AER包时,会自动安装其他有用的附属包:carlmtestsandwich

stata代码块

browse                        
// open browser for loaded data
describe                     
// describe structure of loaded data
summarize                    
// display summary statistics for all variables in dataset
list in 1/6                  
// display first 6 rows
tabulate educ                
// tabulate `educ`variable frequencies
tabulate educ female         
// cross-tabulate `educ` and `female` frequencies

R代码块

View(wage1)                                               
# open browser for loaded`wage1` data
str(wage1)                                                
# describe structure of `wage1` data
summary(wage1)                                            
# display summary statistics for `wage1` variables
head(wage1)                                               
# display first 6 (default) rows data
tail(wage1)                                               
# display last 6 rows
table(wage1$educ)                                         
#tabulate `educ` frequencies
table(“yrs_edu” = wage1$educ, “female” =wage1$female) 
# tabulate `educ`frequencies name table columns

5.生成或编辑变量

本部分涉及生成新变量、计算变量的均值、选取部分变量、生成虚拟变量等相关内容

stata代码块

gen exper2 = exper^2                                 
// create`exper` squared variable
egen wage_avg = mean(wage)                          
// create average wage variable
drop tenursq                                        
// drop `tenursq`variable
keep wage educ exper nonwhite                        
// keep selected variables
tab numdep, gen(numdep)                             
// create dummy variables for `numdep`
recode exper (1/20 = 1 "1 to 20 years") (21/40 = 2 "21 to 40 years") (41/max = 3 "41+ years"),gen(experlvl)  
// recode `exper` and gen new variable

R代码块

wage1$exper2 <- wage1$exper^2                                      
#create `exper` squared variable
wage1$wage_avg <- mean(wage1$wage)                                  
#create average wage variable
wage1$tenursq <- NULL                                               
#drop `tenursq`
wage1 <- wage1[ , c(“wage”, “educ”,“exper”, “nonwhite”)]    
# keep selected variables
wage1 <-fastDummies::dummy_cols(wage1,select_columns = “numdep”)  
# create dummy variables for `numdep`, use {fastDummies} package
wage1$experlvl <- 3                                                 
# recode `exper`
wage1$experlvl[wage1$exper < 41] <- 2
wage1$experlvl[wage1$exper < 21] <- 1

6.估计模型,1/2

本部分主要针对横截面数据,因变量为连续变量的OLS估计和因变量为二值选择或截断时的LogitTobit模型。

6.1 OLS

stata代码块

reg wage educ                            
// simple regression of `wage` by `educ` (Results printed automatically)
reg wage educ if nonwhite==1            
// add condition with if statement
reg wage educ exper, robust            
//multiple regression using HC1 robust standard errors
reg wage educ exper,cluster(numdep)    
// use clustered standard errors

R代码块

mod1 <- lm(wage ~ educ, data =wage1)                                              
# simple regression of`wage` by `educ`, store results in`mod1`
summary(mod1)                                                                      
# print summary of `mod1` results
mod2 <- lm(wage ~ educ, data =wage1[wage1$nonwhite==1, ])                          
# add condition with if statement`
mod3 <- estimatr::lm_robust(wage ~ educ + exper, data = wage1, se_type= “stata”) 
# multiple regressionwith HC1 (Stata default) robust standard errors, use {estimatr} package
mod4 <- estimatr::lm_robust(wage ~ educ + exper, data = wage1,clusters = numdep)   
# use clustered standard errors.

6.2 MLE (Logit/Probit/Tobit)

示例数据mroz

stata代码块

use http://fmwww.bc.edu/ec-p/data/wooldridge/mroz
logit inlf nwifeinc educ                
//estimate logistic regression
probit inlf nwifeinc educ               
//estimate logistic regression
tobit hours nwifeinc educ, ll(0)       
// estimate tobit regression,lower-limit of y censored at zero

R代码块

mod_log <- glm(inlf~nwifeinc + educ+ family=binomial(link="logit"),data=mroz)     
# estimate logistic regression
mod_pro <- glm(inlf~nwifeinc + educ+ family=binomial(link=“probit"),data=mroz)   
# estimate logistic regression
mod_tob <- AER::tobit(hours ~ nwifeinc + educ, left = 0, data = mroz)               
# estimate tobit regression,lower-limit of y censored at zero,use {AER} package

7.统计检验与诊断

本部分主要涉及异方差检验、遗漏变量检验和组间t检验。

stata代码块

reg lwage educ exper                    
// estimation used for examples below
estat hettest                         
// Breusch-Pagan /Cook-Weisberg test for heteroskedasticity
estat ovtest                          
// Ramsey RESET test for omitted variables
ttest wage, by(nonwhite)              
// independent group t-test, compare means of same variable between groups

R代码块

mod <-lm(lwage ~ educ exper, data =wage1)        
# estimate used for examples below
lmtest::bptest(mod)                               
# Breusch-Pagan/ Cook-Weisberg test for heteroskedasticity using the {lmtest} package
lmtest::resettest(mod)                            
# Ramsey RESET test
t.test(wage ~ nonwhite, data =wage1)              
# independent group t-test

8.交互项,类别/连续变量

Stata中,通常使用特殊运算符指代变量为连续变量(c.)或类别变量(i.)。 同样,“#”运算符表示不同的方式来返回它们之间的交互变量。 在这里,我们展示了这些运算符的常见用法及其R等效处理方式。

stata代码块

reg lwage i.numdep                  
// treat `numdep` as a factor variable
reg lwage c.educ#c.exper            
// return interaction term only
reg lwage c.educ##c.exper           
// return full factorial specification
reg lwage c.exper##i.numdep         
//return full, interact continuous and categorical

R代码块

lm(lwage ~ as.factor(numdep), data= wage1)         
# treat `numdep` as factor
lm(lwage ~ educ:exper, data =wage1)                 
# return interaction termonly
lm(lwage ~ educ*exper, data =wage1)                 
# return full factorial specification
lm(wage ~ exper*as.factor(numdep),data = wage1)     
# return full,interact continuous and categorical
连享会最新专题直播

9.估计模型,2/2

9.1 面板/纵向

示例数据murder

stata代码块

xtset id year                
// set `id` as entities (panel) and `year` as time variable
xtdescribe                    
// describe pattern of xt data
xtsum                        
// summarize xt data
xtreg mrdrte unem, fe        
// fixed effects regression

R代码块

plm::is.pbalanced(murder$id,murder$year)
# check panel balancewith {plm} package
modfe <- plm::plm(mrdrte ~ unem,index = c("id", "year"),model ="within", data = murder)
# estimatefixed effects (“within”) model
summary(modfe)
# display results

9.2 工具变量(2SLS)

内生性问题是大家比较关心的问题,示例数据mroz

stata代码块

ivreg lwage (educ = fatheduc),first           
// show results of firststage regression
etest first                                    
// test IV and endogenous variable
ivreg lwage(educ = fatheduc)                  
//show results of 2SLS directly

R代码块

modiv <-AER::ivreg(lwage ~ educ |fatheduc, data = mroz)              
# estimate 2SLS with {AER} package
summary(modiv, diagnostics = TRUE)                                    
# get diagnostic tests of IV andendogenous variable

10.后续估计

Stata中,后续估计必须紧接着回归估计,而R是面向对象编程,不存在这样的困扰。本部分主要涉及回归结果输出和边际效应展示。

stata代码块

reg lwage educ exper##exper                
//estimation used for following postestimation commands
estimates store mod1                     
// stores inmemory the last estimation resultsto `mod1`
margins                                    
// get average predictive
margins
margins, dydx(*)                          
// get average marginal effects for all variables
marginsplot                                
// plot marginal effects
margins, dydx(exper)                      
// average marginal effects of experience
margins, at(exper=(1(10)51))              
// average predictive margins over `exper` range at 10-year increments
estimates use mod1                      
// loads `mod1` back into working memory
estimates table mod1 mod2               
// display table with stored estimation results

R代码块

mod1 <- lm(lwage ~ educ + exper + I(exper^2), data = wage1)
# Note: in R, mathematical expressions inside a formula call must be isolated with `I()`
margins::prediction(mod1)                                     
# get average predictive margins with {margins} package
m1 <- margins::margins(mod1)                                  
# get average marginal effects for all variables
plot(m)                                                       
# plot marginal effects
summary(m)                                                    
# get detailed summary of marginal effects
margins::prediction(mod1, at = list(exper = seq(1,51,10)))    
# predictive margins over `exper` range at 10-year increments
stargazer::stargazer(mod1, mod2, type = “text”)             
# use {stargazer} package, with `type=text` to display results within R. Note: `type= ` also can be changed for LaTex and HTML output.

相关课程

连享会-直播课 上线了! http://lianxh.duanshu.com 免费公开课:
  • 直击面板数据模型 - 连玉君,时长:1 小时 40 分钟
  • Stata 33 讲 - 连玉君, 每讲 15 分钟.
  • 部分直播课 课程资料下载 (PPT,dofiles 等)

r library car_Stata+R:Stata 与 R 等效命令备忘录_第3张图片

Note: 助教招聘信息请进入「课程主页」查看。

因果推断-内生性 专题 ⌚ 2020.11.12-15
主讲:王存同 (中央财经大学);司继春(上海对外经贸大学) 课程主页https://gitee.com/arlionn/YG | 微信版

http://qr32.cn/BlTL43 (二维码自动识别)

空间计量 专题 ⌚ 2020.12.10-13
主讲:杨海生 (中山大学);范巧 (兰州大学) 课程主页https://gitee.com/arlionn/SP | 微信版

https://gitee.com/arlionn/DSGE (二维码自动识别)

r library car_Stata+R:Stata 与 R 等效命令备忘录_第4张图片

关于我们
  • Stata 连享会 由中山大学连玉君老师团队创办,定期分享实证分析经验。直播间 有很多视频课程,可以随时观看。
  • 连享会-主页知乎专栏,300+ 推文,实证分析不再抓狂。
  • 公众号推文分类:计量专题 | 分类推文 | 资源工具。推文分成 内生性 | 空间计量 | 时序面板 | 结果输出 | 交乘调节 五类,主流方法介绍一目了然:DID, RDD, IV, GMM, FE, Probit 等。

r library car_Stata+R:Stata 与 R 等效命令备忘录_第5张图片

连享会小程序:扫一扫,看推文,看视频……

r library car_Stata+R:Stata 与 R 等效命令备忘录_第6张图片

扫码加入连享会微信群,提问交流更方便

r library car_Stata+R:Stata 与 R 等效命令备忘录_第7张图片

你可能感兴趣的:(r,library,car,R,plot图片背景设置为透明,stata,将数据集变量名称导出)