《MATLAB 神经网络43个案例分析》:第3章 遗传算法优化BP神经网络——非线性函数拟合

《MATLAB 神经网络43个案例分析》:第3章 遗传算法优化BP神经网络——非线性函数拟合

  • 1. 前言
  • 2. MATLAB 仿真示例
  • 3. 小结

1. 前言

《MATLAB 神经网络43个案例分析》是MATLAB技术论坛(www.matlabsky.com)策划,由王小川老师主导,2013年北京航空航天大学出版社出版的关于MATLAB为工具的一本MATLAB实例教学书籍,是在《MATLAB神经网络30个案例分析》的基础上修改、补充而成的,秉承着“理论讲解—案例分析—应用扩展”这一特色,帮助读者更加直观、生动地学习神经网络。

《MATLAB神经网络43个案例分析》共有43章,内容涵盖常见的神经网络(BP、RBF、SOM、Hopfield、Elman、LVQ、Kohonen、GRNN、NARX等)以及相关智能算法(SVM、决策树、随机森林、极限学习机等)。同时,部分章节也涉及了常见的优化算法(遗传算法、蚁群算法等)与神经网络的结合问题。此外,《MATLAB神经网络43个案例分析》还介绍了MATLAB R2012b中神经网络工具箱的新增功能与特性,如神经网络并行计算、定制神经网络、神经网络高效编程等。

近年来随着人工智能研究的兴起,神经网络这个相关方向也迎来了又一阵研究热潮,由于其在信号处理领域中的不俗表现,神经网络方法也在不断深入应用到语音和图像方向的各种应用当中,本文结合书中案例,对其进行仿真实现,也算是进行一次重新学习,希望可以温故知新,加强并提升自己对神经网络这一方法在各领域中应用的理解与实践。自己正好在多抓鱼上入手了这本书,下面开始进行仿真示例,主要以介绍各章节中源码应用示例为主,本文主要基于MATLAB2015b(32位)平台仿真实现,这是本书的第三章通过遗传算法优化BP神经网络的实例,话不多说,开始!

2. MATLAB 仿真示例

打开MATLAB,点击“主页”,点击“打开”,找到示例文件
《MATLAB 神经网络43个案例分析》:第3章 遗传算法优化BP神经网络——非线性函数拟合_第1张图片
选中Genetic.m,点击“打开”,依次检查源码文件如下;

适应度函数fun.m

function error = fun(x,inputnum,hiddennum,outputnum,net,inputn,outputn)
%该函数用来计算适应度值
%x          input     个体
%inputnum   input     输入层节点数
%outputnum  input     隐含层节点数
%net        input     网络
%inputn     input     训练输入数据
%outputn    input     训练输出数据
%error      output    个体适应度值

%提取
w1=x(1:inputnum*hiddennum);
B1=x(inputnum*hiddennum+1:inputnum*hiddennum+hiddennum);
w2=x(inputnum*hiddennum+hiddennum+1:inputnum*hiddennum+hiddennum+hiddennum*outputnum);
B2=x(inputnum*hiddennum+hiddennum+hiddennum*outputnum+1:inputnum*hiddennum+hiddennum+hiddennum*outputnum+outputnum);


%网络进化参数
net.trainParam.epochs=20;
net.trainParam.lr=0.1;
net.trainParam.goal=0.00001;
net.trainParam.show=100;
net.trainParam.showWindow=0;
 
%网络权值赋值
net.iw{1,1}=reshape(w1,hiddennum,inputnum);
net.lw{2,1}=reshape(w2,outputnum,hiddennum);
net.b{1}=reshape(B1,hiddennum,1);
net.b{2}=B2;

%网络训练
net=train(net,inputn,outputn);

an=sim(net,inputn);

error=sum(abs(an-outputn));

选择操作函数select.m

function ret=select(individuals,sizepop)
% 本函数对每一代种群中的染色体进行选择,以进行后面的交叉和变异
% individuals input  : 种群信息
% sizepop     input  : 种群规模
% ret         output : 经过选择后的种群

%根据个体适应度值进行排序
fitness1=10./individuals.fitness;

sumfitness=sum(fitness1);
sumf=fitness1./sumfitness;
index=[]; 
for i=1:sizepop   %转sizepop次轮盘
    pick=rand;
    while pick==0    
        pick=rand;        
    end
    for j=1:sizepop    
        pick=pick-sumf(j);        
        if pick<0        
            index=[index j];            
            break;  %寻找落入的区间,此次转轮盘选中了染色体i,注意:在转sizepop次轮盘的过程中,有可能会重复选择某些染色体
        end
    end
end
individuals.chrom=individuals.chrom(index,:);
individuals.fitness=individuals.fitness(index);
ret=individuals;

交叉操作函数Cross.m

function ret=Cross(pcross,lenchrom,chrom,sizepop,bound)
%本函数完成交叉操作
% pcorss                input  : 交叉概率
% lenchrom              input  : 染色体的长度
% chrom                 input  : 染色体群
% sizepop               input  : 种群规模
% ret                   output : 交叉后的染色体
for i=1:sizepop  %每一轮for循环中,可能会进行一次交叉操作,染色体是随机选择的,交叉位置也是随机选择的,%但该轮for循环中是否进行交叉操作则由交叉概率决定(continue控制)
     % 随机选择两个染色体进行交叉
     pick=rand(1,2);
     while prod(pick)==0
         pick=rand(1,2);
     end
     index=ceil(pick.*sizepop);
     % 交叉概率决定是否进行交叉
     pick=rand;
     while pick==0
         pick=rand;
     end
     if pick>pcross
         continue;
     end
     flag=0;
     while flag==0
         % 随机选择交叉位
         pick=rand;
         while pick==0
             pick=rand;
         end
         pos=ceil(pick.*sum(lenchrom)); %随机选择进行交叉的位置,即选择第几个变量进行交叉,注意:两个染色体交叉的位置相同
         pick=rand; %交叉开始
         v1=chrom(index(1),pos);
         v2=chrom(index(2),pos);
         chrom(index(1),pos)=pick*v2+(1-pick)*v1;
         chrom(index(2),pos)=pick*v1+(1-pick)*v2; %交叉结束
         flag1=test(lenchrom,bound,chrom(index(1),:));  %检验染色体1的可行性
         flag2=test(lenchrom,bound,chrom(index(2),:));  %检验染色体2的可行性
         if   flag1*flag2==0
             flag=0;
         else flag=1;
         end    %如果两个染色体不是都可行,则重新交叉
     end
end
ret=chrom;

变异操作函数

function ret=Mutation(pmutation,lenchrom,chrom,sizepop,num,maxgen,bound)
% 本函数完成变异操作
% pcorss                input  : 变异概率
% lenchrom              input  : 染色体长度
% chrom     input  : 染色体群
% sizepop               input  : 种群规模
% opts                  input  : 变异方法的选择
% pop                   input  : 当前种群的进化代数和最大的进化代数信息
% bound                 input  : 每个个体的上届和下届
% maxgen                input  :最大迭代次数
% num                   input  : 当前迭代次数
% ret                   output : 变异后的染色体

for i=1:sizepop   %每一轮for循环中,可能会进行一次变异操作,染色体是随机选择的,变异位置也是随机选择的,
    %但该轮for循环中是否进行变异操作则由变异概率决定(continue控制)
    % 随机选择一个染色体进行变异
    pick=rand;
    while pick==0
        pick=rand;
    end
    index=ceil(pick*sizepop);
    % 变异概率决定该轮循环是否进行变异
    pick=rand;
    if pick>pmutation
        continue;
    end
    flag=0;
    while flag==0
        % 变异位置
        pick=rand;
        while pick==0      
            pick=rand;
        end
        pos=ceil(pick*sum(lenchrom));  %随机选择了染色体变异的位置,即选择了第pos个变量进行变异
    
        pick=rand; %变异开始     
        fg=(rand*(1-num/maxgen))^2;
        if pick>0.5
            chrom(i,pos)=chrom(i,pos)+(bound(pos,2)-chrom(i,pos))*fg;
        else
            chrom(i,pos)=chrom(i,pos)-(chrom(i,pos)-bound(pos,1))*fg;
        end   %变异结束
        flag=test(lenchrom,bound,chrom(i,:));     %检验染色体的可行性
    end
end
ret=chrom;

遗传算法主函数Genetic.m源码如下:

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%功能:该代码为基于遗传算法神经网络的预测代码
%环境:Win7,Matlab2015b
%Modi: C.S
%时间:2022-06-08
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% 清空环境变量
clc
clear
% 
%% 网络结构建立
%读取数据
tic
load data input output

%节点个数
inputnum=2;
hiddennum=5;
outputnum=1;

%训练数据和预测数据
input_train=input(1:1900,:)';
input_test=input(1901:2000,:)';
output_train=output(1:1900)';
output_test=output(1901:2000)';

%选连样本输入输出数据归一化
[inputn,inputps]=mapminmax(input_train);
[outputn,outputps]=mapminmax(output_train);

%构建网络
net=newff(inputn,outputn,hiddennum);

%% 遗传算法参数初始化
maxgen=20;                         %进化代数,即迭代次数
sizepop=10;                        %种群规模
pcross=[0.2];                       %交叉概率选择,01之间
pmutation=[0.1];                    %变异概率选择,01之间

%节点总数
numsum=inputnum*hiddennum+hiddennum+hiddennum*outputnum+outputnum;

lenchrom=ones(1,numsum);        
bound=[-3*ones(numsum,1) 3*ones(numsum,1)];    %数据范围

%------------------------------------------------------种群初始化--------------------------------------------------------
individuals=struct('fitness',zeros(1,sizepop), 'chrom',[]);  %将种群信息定义为一个结构体
avgfitness=[];                      %每一代种群的平均适应度
bestfitness=[];                     %每一代种群的最佳适应度
bestchrom=[];                       %适应度最好的染色体
%初始化种群
for i=1:sizepop
    %随机产生一个种群
    individuals.chrom(i,:)=Code(lenchrom,bound);    %编码(binary和grey的编码结果为一个实数,float的编码结果为一个实数向量)
    x=individuals.chrom(i,:);
    %计算适应度
    individuals.fitness(i)=fun(x,inputnum,hiddennum,outputnum,net,inputn,outputn);   %染色体的适应度
end
FitRecord=[];
%找最好的染色体
[bestfitness bestindex]=min(individuals.fitness);
bestchrom=individuals.chrom(bestindex,:);  %最好的染色体
avgfitness=sum(individuals.fitness)/sizepop; %染色体的平均适应度
% 记录每一代进化中最好的适应度和平均适应度
trace=[avgfitness bestfitness]; 
 
%% 迭代求解最佳初始阀值和权值
% 进化开始
for i=1:maxgen
    i
    % 选择
    [sizepop,~] = size(individuals.chrom);
    individuals=select(individuals,sizepop); 
    avgfitness=sum(individuals.fitness)/sizepop;
    %交叉
    individuals.chrom=Cross(pcross,lenchrom,individuals.chrom,sizepop,bound);
    % 变异
    individuals.chrom=Mutation(pmutation,lenchrom,individuals.chrom,sizepop,i,maxgen,bound);
 
    % 计算适应度 
    for j=1:sizepop
        x=individuals.chrom(j,:); %解码
        individuals.fitness(j)=fun(x,inputnum,hiddennum,outputnum,net,inputn,outputn);   
    end
    
  %找到最小和最大适应度的染色体及它们在种群中的位置
    [newbestfitness,newbestindex]=min(individuals.fitness);
    [worestfitness,worestindex]=max(individuals.fitness);
    % 代替上一次进化中最好的染色体
    if bestfitness>newbestfitness
        bestfitness=newbestfitness;
        bestchrom=individuals.chrom(newbestindex,:);
    end
    individuals.chrom(worestindex,:)=bestchrom;
    individuals.fitness(worestindex)=bestfitness;
    
    avgfitness=sum(individuals.fitness)/sizepop;
    
    trace=[trace;avgfitness bestfitness]; %记录每一代进化中最好的适应度和平均适应度
    FitRecord=[FitRecord;individuals.fitness];
end

%% 遗传算法结果分析 
figure(1)
[r c]=size(trace);
plot([1:r]',trace(:,2),'b--');
title(['适应度曲线  ' '终止代数=' num2str(maxgen)]);
xlabel('进化代数');ylabel('适应度');
legend('平均适应度','最佳适应度');
disp('适应度                   变量');

%% 把最优初始阀值权值赋予网络预测
% %用遗传算法优化的BP网络进行值预测
w1=x(1:inputnum*hiddennum);
B1=x(inputnum*hiddennum+1:inputnum*hiddennum+hiddennum);
w2=x(inputnum*hiddennum+hiddennum+1:inputnum*hiddennum+hiddennum+hiddennum*outputnum);
B2=x(inputnum*hiddennum+hiddennum+hiddennum*outputnum+1:inputnum*hiddennum+hiddennum+hiddennum*outputnum+outputnum);

net.iw{1,1}=reshape(w1,hiddennum,inputnum);
net.lw{2,1}=reshape(w2,outputnum,hiddennum);
net.b{1}=reshape(B1,hiddennum,1);
net.b{2}=B2;

%% BP网络训练
%网络进化参数
net.trainParam.epochs=100;
net.trainParam.lr=0.1;
%net.trainParam.goal=0.00001;

%网络训练
[net,per2]=train(net,inputn,outputn);

%% BP网络预测
%数据归一化
inputn_test=mapminmax('apply',input_test,inputps);
an=sim(net,inputn_test);
test_simu=mapminmax('reverse',an,outputps);
error=test_simu-output_test;
toc
% web browser www.matlabsky.com

添加完毕,点击“运行”,开始仿真,输出仿真结果如下:
《MATLAB 神经网络43个案例分析》:第3章 遗传算法优化BP神经网络——非线性函数拟合_第2张图片
点击Performance可得:
《MATLAB 神经网络43个案例分析》:第3章 遗传算法优化BP神经网络——非线性函数拟合_第3张图片
点击Training State可得:
《MATLAB 神经网络43个案例分析》:第3章 遗传算法优化BP神经网络——非线性函数拟合_第4张图片
点击Regression可得:
《MATLAB 神经网络43个案例分析》:第3章 遗传算法优化BP神经网络——非线性函数拟合_第5张图片
主函数输出适应度曲线如下:
《MATLAB 神经网络43个案例分析》:第3章 遗传算法优化BP神经网络——非线性函数拟合_第6张图片

3. 小结

遗传算法(Genetic Algorithms,GA),顾名思义就是参考生物学中的遗传学为基础,进行进化选择,变异选择等操作,它是1962年美国人提出,模拟自然界遗传和生物进化论而成的一种并行随机搜索最优化方法。

将遗传算法结合BP神经网络应用到非线性函数拟合,通过不断迭代进化,可以提高BP神经网络权值阈值的适应度,从而得到更优的分类效果。本示例仅供大家学习参考,对本章内容感兴趣或者想充分学习了解的,建议去研习书中第三章节的内容。后期会对其中一些知识点在自己理解的基础上进行补充,欢迎大家一起学习交流。

本书源码仿真未能成功跑通,总是出现维度报错,主要参考的是下面这位同学的仿真实现,并且他对整个仿真实现过程进行了详细的介绍,感兴趣的同学可以前往参考,他好像也对本书的一系列仿真进行了实现,可以关注一波。

参考:遗传算法优化BP神经网络

你可能感兴趣的:(MATLAB,神经网络43个案例分析,matlab,神经网络,遗传算法,BP神经网络)