7.FLINK Source\基于集合\基于文件\基于Socket\自定义Source--随机订单数量\自定义Source\自定义Source-MySQL

7.Source
7.1.基于集合
7.2.基于文件
7.3.基于Socket
7.4.自定义Source–随机订单数量
7.4.1.自定义Source
7.5.自定义Source-MySQL

7.Source

7.FLINK Source\基于集合\基于文件\基于Socket\自定义Source--随机订单数量\自定义Source\自定义Source-MySQL_第1张图片

7.1.基于集合

基于集合的Source
一般用于学习测试时编造数据时使用。
env.fromElements(可变参数);
env.fromCollection(各种集合);
env.generateSequence(开始,结束);
env.fromSequence(开始,结束);

import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;

import java.util.Arrays;

/**
 * TODO
 *
 * @author tuzuoquan
 * @date 2022/4/1 21:52
 */
public class SourceDemo01_Collection {

    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);

        //TODO 1.source
        DataStream<String> ds1 = env.fromElements("hadoop spark flink", "hadoop spark flink");
        DataStream<String> ds2 = env.fromCollection(Arrays.asList("hadoop spark flink", "hadoop spark flink"));
        DataStream<Long> ds3 = env.generateSequence(1, 100);
        DataStream<Long> ds4 = env.fromSequence(1, 100);

        //TODO 2.transformation

        //TODO 3.sink
        ds1.print();
        ds2.print();
        ds3.print();
        ds4.print();

        //TODO 4.execute
        env.execute();

    }

}

7.2.基于文件

一般用于学习测试时编造数据时使用
env.readTextFile(本地/HDFS文件/文件夹); //压缩文件也可以

public class SourceDemo02_File {
    public static void main(String[] args) throws Exception {
        //TODO 0.env
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);

        //TODO 1.source
        DataStream<String> ds1 = env.readTextFile("data/input/words.txt");
        DataStream<String> ds2 = env.readTextFile("data/input/dir");
        DataStream<String> ds3 = env.readTextFile("data/input/wordcount.txt.gz");


        //TODO 2.transformation

        //TODO 3.sink
        ds1.print();
        ds2.print();
        ds3.print();

        //TODO 4.execute
        env.execute();
    }
}

7.3.基于Socket

需求:
1.在node1上使用nc -lk 9999向指定端口发送数据
nc是netcat的简称,原本是用来设置路由器,我们可以利用它向某个端口发送数据。
如果没有该命令可以下安装

yum install -y nc

2.使用Flink编写流处理应用程序实时统计单词数量

import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;

/**
 * @author tuzuoquan
 * @date 2022/4/1 23:49
 */
public class SourceDemo03_Socket {

    public static void main(String[] args) throws Exception {
        //TODO 0.env
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);

        //TODO 1.source
        DataStream<String> line = env.socketTextStream("node1", 9999);

        //TODO 2.transformation
        /*SingleOutputStreamOperator words = lines.flatMap(new FlatMapFunction() {
            @Override
            public void flatMap(String value, Collector out) throws Exception {
                String[] arr = value.split(" ");
                for (String word : arr) {
                    out.collect(word);
                }
            }
        });

        words.map(new MapFunction>() {
            @Override
            public Tuple2 map(String value) throws Exception {
                return Tuple2.of(value,1);
            }
        });*/

        //注意:下面的操作将上面的2步合成了1步,直接切割单词并记为1返回
        SingleOutputStreamOperator<Tuple2<String,Integer>> wordAndOne =
                line.flatMap(new FlatMapFunction<String, Tuple2<String, Integer>>() {
                    @Override
                    public void flatMap(String value, Collector<Tuple2<String, Integer>> out) throws Exception {
                        String[] arr = value.split(" ");
                        for (String word : arr) {
                            out.collect(Tuple2.of(word, 1));
                        }
                    }
                });

        SingleOutputStreamOperator<Tuple2<String, Integer>> result =
                wordAndOne.keyBy(t -> t.f0).sum(1);

        // TODO 3.sink
        result.print();

        // TODO 4.execute
        env.execute();

    }

}

7.4.自定义Source–随机订单数量

注意:lombok的使用

<dependency>
    <groupId>org.projectlombokgroupId>
    <artifactId>lombokartifactId>
    <version>1.18.2version>
    <scope>providedscope>
dependency>
package demo3;

import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;

/**
 * @author tuzuoquan
 * @date 2022/4/2 0:02
 */
@Data
@AllArgsConstructor
@NoArgsConstructor
public class Order {
    private String id;
    private Integer userId;
    private Integer money;
    private Long createTime;
    
}

7.4.1.自定义Source

随机生成数据

Flink还提供了数据源接口,我们实现该接口就可以实现自定义数据源,不同的接口有不同的功能,分类如下:
SourceFunction: 非并行数据源(并行度只能 = 1)
RichSourceFunction: 多功能非并行数据源(并行度只能 = 1)
ParallelSourceFunction: 并行数据源(并行度能够 >= 1)
RichParallelSourceFunction: 多功能并行数据源(并行度能够 >= 1)

需求
每隔1秒随机生成一条订单信息(订单ID、用户ID、订单金额、时间戳)

要求:

  • 随机生成订单ID (UUID)
  • 随机生成用户ID (0 - 2)
  • 随机生成订单金额 (0 - 100)
  • 时间戳为当前的系统时间
CREATE TABLE `t_student` (
    `id` int(11) NOT NULL AUTO_INCREMENT,
    `name` varchar(255) DEFAULT NULL,
    `age` int(11) DEFAULT NULL,
    PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=7 DEFAULT CHARSET=utf8;

INSERT INTO `t_student` VALUES ('1', 'jack', '18');
INSERT INTO `t_student` VALUES ('2', 'tom', '19');
INSERT INTO `t_student` VALUES ('3', 'rose', '20');
INSERT INTO `t_student` VALUES ('4', 'tom', '19');
INSERT INTO `t_student` VALUES ('5', 'jack', '18');
INSERT INTO `t_student` VALUES ('6', 'rose', '20');
package demo3;

import demo3.Order;
import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.source.RichParallelSourceFunction;

import java.util.Random;
import java.util.UUID;

/**
 * TODO
 *
 * @author tuzuoquan
 * @date 2022/4/2 0:13
 */
public class SourceDemo04_Customer {

    public static void main(String[] args) throws Exception {
        //TODO 0.env
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);

        //TODO 1.source
        DataStream<Order> orderDS = env.addSource(new MyOrderSource()).setParallelism(2);

        //TODO 2.transformation

        //TODO 3.sink
        orderDS.print();

        //TODO 4.execute
        env.execute();

    }

    public static class MyOrderSource extends RichParallelSourceFunction<Order> {
        private Boolean flag = true;

        // 执行并生数据
        @Override
        public void run(SourceContext<Order> sourceContext) throws Exception {
            Random random = new Random();
            while (flag) {
                String oid = UUID.randomUUID().toString();
                int userId = random.nextInt(3);
                int money = random.nextInt(101);
                long createTime = System.currentTimeMillis();
                sourceContext.collect(new Order(oid, userId, money, createTime));
                Thread.sleep(1000);
            }
        }

        //执行cancel命令的时候执行
        @Override
        public void cancel() {
            flag = false;
        }

    }

}

执行结果:

1> Order(id=20783def-ede5-4fd3-88b8-79023f936bf2, userId=2, money=13, createTime=1648830057754)
3> Order(id=3c1daa2f-ff8e-42fc-bdfa-b88de08df592, userId=0, money=86, createTime=1648830057754)
2> Order(id=e55ee291-6ecf-4545-b85e-ff9a22726e59, userId=1, money=93, createTime=1648830058765)
4> Order(id=60aafc7f-39a1-4911-8d02-bb3f0de99024, userId=0, money=60, createTime=1648830058765)
3> Order(id=77ccdb4f-3e67-46f0-9920-b285c9c78fd3, userId=2, money=36, createTime=1648830059775)
5> Order(id=c1635e13-b134-424f-90b8-d2f738a7e3bc, userId=0, money=42, createTime=1648830059776)
6> Order(id=e4cbc59c-a3ab-4969-8b7c-828f5cb72a38, userId=0, money=59, createTime=1648830060778)

7.5.自定义Source-MySQL

MySQL
实际开发中,经常会实时接收一些数据,要和MySQL中存储的一些规则进行匹配,那么这时候就可以使用Flink自定义数据源从MySQL中读取数据

那么现在先完成一个简单的需求:
1、从MySQL中实时加载数据
2、要求MySQL中的数据有变化,也能被实时加载出来。

package demo4;

import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;

/**
 * @author tuzuoquan
 * @date 2022/4/14 9:49
 */
@Data
@NoArgsConstructor
@AllArgsConstructor
public class Student {

    private Integer id;
    private String name;
    private Integer age;

}
package demo4;

import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.functions.source.RichParallelSourceFunction;

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;

/**
 * TODO
 *
 * @author tuzuoquan
 * @date 2022/4/14 9:51
 */
public class MySQLSource extends RichParallelSourceFunction<Student> {
    private boolean flag = true;
    private Connection conn = null;
    private PreparedStatement ps = null;
    private ResultSet rs  = null;

    /**
     * open只执行一次,适合开启资源
     * @param parameters
     * @throws Exception
     */
    @Override
    public void open(Configuration parameters) throws Exception {
        conn = DriverManager.getConnection("jdbc:mysql://localhost:3306/bigdata",
                "root", "root");
        String sql = "select id,name,age from t_student";
        ps = conn.prepareStatement(sql);
    }

    @Override
    public void run(SourceContext<Student> ctx) throws Exception {
        while (flag) {
            rs = ps.executeQuery();
            while (rs.next()) {
                int id = rs.getInt("id");
                String name = rs.getString("name");
                int age = rs.getInt("age");
                ctx.collect(new Student(id, name, age));
            }
            Thread.sleep(5000);
        }
    }

    /**
     * 接收到cancel命令时取消数据生成
     */
    @Override
    public void cancel() {
        flag = false;
    }

    /**
     * close里面关闭资源
     * @throws Exception
     */
    @Override
    public void close() throws Exception {
        if (conn != null) { conn.close(); }
        if (ps != null) { ps.close(); }
        if (rs != null) { rs.close(); }
}

}
/*
CREATE TABLE `t_student` (
    `id` int(11) NOT NULL AUTO_INCREMENT,
    `name` varchar(255) DEFAULT NULL,
    `age` int(11) DEFAULT NULL,
    PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=7 DEFAULT CHARSET=utf8;

INSERT INTO `t_student` VALUES ('1', 'jack', '18');
INSERT INTO `t_student` VALUES ('2', 'tom', '19');
INSERT INTO `t_student` VALUES ('3', 'rose', '20');
INSERT INTO `t_student` VALUES ('4', 'tom', '19');
INSERT INTO `t_student` VALUES ('5', 'jack', '18');
INSERT INTO `t_student` VALUES ('6', 'rose', '20');
*/
package demo4;

import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;

/**
 * @author tuzuoquan
 * @date 2022/4/14 9:42
 */
public class SourceDemo05_Customer_MySQL {

    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);

        //TODO 1.source
        DataStream<Student> studentDS = env.addSource(new MySQLSource()).setParallelism(1);

        //TODO 2.transformation

        //TODO 3.sink
        studentDS.print();

        //TODO 4.execute
        env.execute();
    }

}

你可能感兴趣的:(#,黑马贺岁Flink学习笔记,flink,mysql,大数据)