【图像增强】基于Frangi滤波器实现血管图像增强附matlab代码

1 简介

针对眼底视网膜图像对比度低,受病变区域边界干扰,很难正确提取血管细节的问题提出了一种基于Frangi滤波器的视网膜血管分割的方法,仿真结果表明上述方法对细小血管的提取表现出良好的效果,具备很强的实用价值.

2 部分代码

function I=imgaussian(I,sigma,siz)% IMGAUSSIAN filters an 1D, 2D color/greyscale or 3D image with an % Gaussian filter. This function uses for filtering IMFILTER or if % compiled the fast  mex code imgaussian.c . Instead of using a % multidimensional gaussian kernel, it uses the fact that a Gaussian % filter can be separated in 1D gaussian kernels.%% J=IMGAUSSIAN(I,SIGMA,SIZE)%% inputs,%   I: The 1D, 2D greyscale/color, or 3D input image with %           data type Single or Double%   SIGMA: The sigma used for the Gaussian kernel%   SIZE: Kernel size (single value) (default: sigma*6)% % outputs,%   J: The gaussian filtered image%% note, compile the code with: mex imgaussian.c -v%% example,%   I = im2double(imread('peppers.png'));%   figure, imshow(imgaussian(I,10));% % Function is written by D.Kroon University of Twente (September 2009)if(~exist('siz','var')), siz=sigma*6; endif(sigma>0)    % Make 1D Gaussian kernel    x=-ceil(siz/2):ceil(siz/2);    H = exp(-(x.^2/(2*sigma^2)));    H = H/sum(H(:));    % Filter each dimension with the 1D Gaussian kernels\    if(ndims(I)==1)        I=imfilter(I,H, 'same' ,'replicate');    elseif(ndims(I)==2)        Hx=reshape(H,[length(H) 1]);        Hy=reshape(H,[1 length(H)]);        I=imfilter(imfilter(I,Hx, 'same' ,'replicate'),Hy, 'same' ,'replicate');    elseif(ndims(I)==3)        if(size(I,3)<4) % Detect if 3D or color image            Hx=reshape(H,[length(H) 1]);            Hy=reshape(H,[1 length(H)]);            for k=1:size(I,3)                I(:,:,k)=imfilter(imfilter(I(:,:,k),Hx, 'same' ,'replicate'),Hy, 'same' ,'replicate');            end        else            Hx=reshape(H,[length(H) 1 1]);            Hy=reshape(H,[1 length(H) 1]);            Hz=reshape(H,[1 1 length(H)]);            I=imfilter(imfilter(imfilter(I,Hx, 'same' ,'replicate'),Hy, 'same' ,'replicate'),Hz, 'same' ,'replicate');        end    else        error('imgaussian:input','unsupported input dimension');    endend

3 仿真结果

【图像增强】基于Frangi滤波器实现血管图像增强附matlab代码_第1张图片

4 参考文献

[1]袁盼, 陈以. 基于多尺度Frangi滤波器的视网膜血管分割[J]. 现代信息科技, 2020.​

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

部分理论引用网络文献,若有侵权联系博主删除。

 

你可能感兴趣的:(图像处理,大数据)