[ 注意力机制 ] 经典网络模型2——CBAM 详解与复现


Author :Horizon Max

编程技巧篇:各种操作小结

机器视觉篇:会变魔术 OpenCV

深度学习篇:简单入门 PyTorch

神经网络篇:经典网络模型

算法篇:再忙也别忘了 LeetCode


[ 注意力机制 ] 经典网络模型2——CBAM 详解与复现

  • Convolutional Block Attention Module
  • CBAM 详解
    • 背景知识
    • 论文贡献
    • Convolutional Block Attention Module
      • Channel Attention Module
      • Spatial Attention Module
      • CBAM 的应用
  • CBAM 复现

Convolutional Block Attention Module

Convolutional Block Attention Module 简称 CBAM,Sanghyun等人于2018年提出的一种新的 卷积注意力模块

创新提出了 通道注意力与空间注意力融合 的注意力机制 ;

对前馈卷积神经网络 是一个 简单而有效的 注意力模块 ;

因为它的 轻量级和通用性 ,可以 无缝集成到任何CNN网络 当中 ;

作者实验表明,不同的模型在 分类和检测性能 上都有持续的提高 ;


论文地址:CBAM: Convolutional Block Attention Module


CBAM 详解

背景知识

为提高 CNN性能 ,最近的研究主要研究了网络的三个重要因素: depth(深度) , width(宽度) , cardinality(基数)

从20世纪90年代 LeNet 网络的提出,网络的 深度 不断增加;
后来 VGG 网络表明,相同形状的块堆叠 效果良好;
GoogLeNet 网络的提出,提出宽度 也是提高模型性能的另一个重要因素;
同样的,ResNet残差块 以相同拓扑与跳跃式连接堆叠在一起,构建了一个非常深的架构,达到了不错的效果;
XceptionResNeXt 网络表明,增加网络 基数 不仅减少了参数量,而且比另 两个因素(深度和宽度) 具有更强的表示能力;

除了这些因素之外,作者还研究了网络设计的另一个方面—— 注意力
“注意力” 也是 人类视觉系统 的一个很有趣的地方 ;
通过注意力机制来增加网络的表征力:关注重要特征,抑制不必要特征

卷积运算是通过将 跨通道信息和空间信息混合 在一起来提取信息特征的 ;
因此提出了 CBAM 来强调通道轴和空间轴这两个主要维度上的有意义特征 ;
并对此依次应用了 Channel Attention Module (通道注意模块)Spatial Attention Module (空间注意模块)


Convolutional Block Attention Module

[ 注意力机制 ] 经典网络模型2——CBAM 详解与复现_第1张图片


论文贡献

(1)提出了一个简单而有效的注意力模块(CBAM),可以广泛应用于提高 CNN 的表示能力 ;
(2)通过广泛的消融研究来验证我们的注意力模块的有效性 ;
(3)通过插入轻量级模块(CBAM),验证了各种网络的性能在多个基准(ImageNet-1K、MS COCO和VOC 2007)上都得到了极大的提高;


假设 输入特征图为 : F ∈ R CxHxW
利用 CBAM 依此推导出 一维通道注意图 : Mc ∈ R Cx1x1二维空间注意图 : Ms ∈ R 1xHxW
总的注意过程可以概括为 :
[ 注意力机制 ] 经典网络模型2——CBAM 详解与复现_第2张图片

Convolutional Block Attention Module

[ 注意力机制 ] 经典网络模型2——CBAM 详解与复现_第3张图片

Channel Attention Module

利用 特征间的通道关系 来生成通道注意图 ;

由于feature map的每个channel都被认为是 一个feature检测器 ,因此 channel 的注意力集中在 给定输入图像的 "什么" 是有意义的
为了有效地计算通道注意力,采用 压缩输入特征映射的空间维度 的方法 ;
文中同时使用 AvgPool (平均池化)MaxPool (最大池化) 的方法,并证明了这种做法比单独使用一种池化方法更具有表征力;

channel attention module
式中,σ 为 sigmoid 函数 ,W0 ∈ RC/r×C ,W1 ∈ RC×C/r ,MLP的权重 W0 和 W1 共享,在W0 前是 ReLU 激活函数 ;


Spatial Attention Module

利用 特征间的空间关系 生成空间注意图 ;

与通道注意模块不同的是,空间注意模块关注的是 信息部分 "在哪里" ,作为通道注意模块的补充 ;
为了计算空间注意力,首先沿着通道轴应用 平均池化和最大池化 操作,并将它们连接起来以生成一个有效的 特征描述符

使用两个池化操作聚合一个feature map的通道信息,生成两个2D maps :
Fsavg ∈ R1×H×W 和 Fsmax ∈ R1×H×W
每个都表示通道的 平均池化特性最大池化特性 ,然后利用一个标准的卷积层进行连接和卷积操作,得到二维空间注意力图 ;

[ 注意力机制 ] 经典网络模型2——CBAM 详解与复现_第4张图片
式中,σ 为 sigmoid 函数 ,f 7x7 为 7 x 7 大小的卷积核 ;



CBAM 的应用

[ 注意力机制 ] 经典网络模型2——CBAM 详解与复现_第5张图片

以上是将 CBAM 结合 ResBlock 应用于ResNet中 ;
两个模块可以以并行或顺序的方式放置,实验测试发现 顺序排列并行排列 有更好的结果 ;

[ 注意力机制 ] 经典网络模型2——CBAM 详解与复现_第6张图片


最后,分别使用 ResNet50ResNet50+SENetResNet50+CBAM 进行实验得到可视化结果 :

[ 注意力机制 ] 经典网络模型2——CBAM 详解与复现_第7张图片

实验表明 CBAM 性能超越了 SENet


CBAM 复现

这里实现的是 CBAM-ResNet 系列网络 :

# Here is the code :

import torch
import torch.nn as nn
import torch.nn.functional as F
from torchinfo import summary


class ChannelAttention(nn.Module):           # Channel Attention Module
    def __init__(self, in_planes):
        super(ChannelAttention, self).__init__()
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.max_pool = nn.AdaptiveMaxPool2d(1)

        self.fc1 = nn.Conv2d(in_planes, in_planes // 16, kernel_size=1, bias=False)
        self.relu = nn.ReLU()
        self.fc2 = nn.Conv2d(in_planes // 16, in_planes, kernel_size=1, bias=False)
        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        avg_out = self.avg_pool(x)
        avg_out = self.fc1(avg_out)
        avg_out = self.relu(avg_out)
        avg_out = self.fc2(avg_out)

        max_out = self.max_pool(x)
        max_out = self.fc1(max_out)
        max_out = self.relu(max_out)
        max_out = self.fc2(max_out)

        out = avg_out + max_out
        out = self.sigmoid(out)
        return out


class SpatialAttention(nn.Module):           # Spatial Attention Module
    def __init__(self):
        super(SpatialAttention, self).__init__()
        self.conv1 = nn.Conv2d(2, 1, kernel_size=7, padding=3, bias=False)
        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        avg_out = torch.mean(x, dim=1, keepdim=True)
        max_out, _ = torch.max(x, dim=1, keepdim=True)
        out = torch.cat([avg_out, max_out], dim=1)
        out = self.conv1(out)
        out = self.sigmoid(out)
        return out


class BasicBlock(nn.Module):      # 左侧的 residual block 结构(18-layer、34-layer)
    expansion = 1

    def __init__(self, in_planes, planes, stride=1):      # 两层卷积 Conv2d + Shutcuts
        super(BasicBlock, self).__init__()
        self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3,
                               stride=stride, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(planes)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3,
                               stride=1, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(planes)

        self.channel = ChannelAttention(self.expansion*planes)     # Channel Attention Module
        self.spatial = SpatialAttention()                          # Spatial Attention Module

        self.shortcut = nn.Sequential()
        if stride != 1 or in_planes != self.expansion*planes:      # Shutcuts用于构建 Conv Block 和 Identity Block
            self.shortcut = nn.Sequential(
                nn.Conv2d(in_planes, self.expansion*planes,
                          kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(self.expansion*planes)
            )

    def forward(self, x):
        out = F.relu(self.bn1(self.conv1(x)))
        out = self.bn2(self.conv2(out))
        CBAM_Cout = self.channel(out)
        out = out * CBAM_Cout
        CBAM_Sout = self.spatial(out)
        out = out * CBAM_Sout
        out += self.shortcut(x)
        out = F.relu(out)
        return out


class Bottleneck(nn.Module):      # 右侧的 residual block 结构(50-layer、101-layer、152-layer)
    expansion = 4

    def __init__(self, in_planes, planes, stride=1):      # 三层卷积 Conv2d + Shutcuts
        super(Bottleneck, self).__init__()
        self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False)
        self.bn1 = nn.BatchNorm2d(planes)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3,
                               stride=stride, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(planes)
        self.conv3 = nn.Conv2d(planes, self.expansion*planes,
                               kernel_size=1, bias=False)
        self.bn3 = nn.BatchNorm2d(self.expansion*planes)

        self.channel = ChannelAttention(self.expansion*planes)     # Channel Attention Module
        self.spatial = SpatialAttention()                          # Spatial Attention Module

        self.shortcut = nn.Sequential()
        if stride != 1 or in_planes != self.expansion*planes:      # Shutcuts用于构建 Conv Block 和 Identity Block
            self.shortcut = nn.Sequential(
                nn.Conv2d(in_planes, self.expansion*planes,
                          kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(self.expansion*planes)
            )

    def forward(self, x):
        out = F.relu(self.bn1(self.conv1(x)))
        out = F.relu(self.bn2(self.conv2(out)))
        out = self.bn3(self.conv3(out))
        CBAM_Cout = self.channel(out)
        out = out * CBAM_Cout
        CBAM_Sout = self.spatial(out)
        out = out * CBAM_Sout
        out += self.shortcut(x)
        out = F.relu(out)
        return out


class CBAM_ResNet(nn.Module):
    def __init__(self, block, num_blocks, num_classes=1000):
        super(CBAM_ResNet, self).__init__()
        self.in_planes = 64

        self.conv1 = nn.Conv2d(3, 64, kernel_size=3,
                               stride=1, padding=1, bias=False)                  # conv1
        self.bn1 = nn.BatchNorm2d(64)
        self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)       # conv2_x
        self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)      # conv3_x
        self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)      # conv4_x
        self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)      # conv5_x
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.linear = nn.Linear(512 * block.expansion, num_classes)

    def _make_layer(self, block, planes, num_blocks, stride):
        strides = [stride] + [1]*(num_blocks-1)
        layers = []
        for stride in strides:
            layers.append(block(self.in_planes, planes, stride))
            self.in_planes = planes * block.expansion
        return nn.Sequential(*layers)

    def forward(self, x):
        x = F.relu(self.bn1(self.conv1(x)))
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)
        x = self.avgpool(x)
        x = torch.flatten(x, 1)
        out = self.linear(x)
        return out


def CBAM_ResNet18():
    return CBAM_ResNet(BasicBlock, [2, 2, 2, 2])


def CBAM_ResNet34():
    return CBAM_ResNet(BasicBlock, [3, 4, 6, 3])


def CBAM_ResNet50():
    return CBAM_ResNet(Bottleneck, [3, 4, 6, 3])


def CBAM_ResNet101():
    return CBAM_ResNet(Bottleneck, [3, 4, 23, 3])


def CBAM_ResNet152():
    return CBAM_ResNet(Bottleneck, [3, 8, 36, 3])


def test():
    net = CBAM_ResNet50()
    y = net(torch.randn(1, 3, 224, 224))
    print(y.size())
    summary(net, (1, 3, 224, 224))


if __name__ == '__main__':
    test()

输出结果:

torch.Size([1, 1000])
===============================================================================================
Layer (type:depth-idx)                        Output Shape              Param #
===============================================================================================
CBAM_ResNet                                   --                        --
├─Conv2d: 1-1                                 [1, 64, 224, 224]         1,728
├─BatchNorm2d: 1-2                            [1, 64, 224, 224]         128
├─Sequential: 1-3                             [1, 256, 224, 224]        --
│    └─Bottleneck: 2-1                        [1, 256, 224, 224]        --
│    │    └─Conv2d: 3-1                       [1, 64, 224, 224]         4,096
│    │    └─BatchNorm2d: 3-2                  [1, 64, 224, 224]         128
│    │    └─Conv2d: 3-3                       [1, 64, 224, 224]         36,864
│    │    └─BatchNorm2d: 3-4                  [1, 64, 224, 224]         128
│    │    └─Conv2d: 3-5                       [1, 256, 224, 224]        16,384
│    │    └─BatchNorm2d: 3-6                  [1, 256, 224, 224]        512
│    │    └─ChannelAttention: 3-7             [1, 256, 1, 1]            8,192
│    │    └─SpatialAttention: 3-8             [1, 1, 1, 1]              98
│    │    └─Sequential: 3-9                   [1, 256, 224, 224]        16,896
│    └─Bottleneck: 2-2                        [1, 256, 224, 224]        --
│    │    └─Conv2d: 3-10                      [1, 64, 224, 224]         16,384
│    │    └─BatchNorm2d: 3-11                 [1, 64, 224, 224]         128
│    │    └─Conv2d: 3-12                      [1, 64, 224, 224]         36,864
│    │    └─BatchNorm2d: 3-13                 [1, 64, 224, 224]         128
│    │    └─Conv2d: 3-14                      [1, 256, 224, 224]        16,384
│    │    └─BatchNorm2d: 3-15                 [1, 256, 224, 224]        512
│    │    └─ChannelAttention: 3-16            [1, 256, 1, 1]            8,192
│    │    └─SpatialAttention: 3-17            [1, 1, 1, 1]              98
│    │    └─Sequential: 3-18                  [1, 256, 224, 224]        --
│    └─Bottleneck: 2-3                        [1, 256, 224, 224]        --
│    │    └─Conv2d: 3-19                      [1, 64, 224, 224]         16,384
│    │    └─BatchNorm2d: 3-20                 [1, 64, 224, 224]         128
│    │    └─Conv2d: 3-21                      [1, 64, 224, 224]         36,864
│    │    └─BatchNorm2d: 3-22                 [1, 64, 224, 224]         128
│    │    └─Conv2d: 3-23                      [1, 256, 224, 224]        16,384
│    │    └─BatchNorm2d: 3-24                 [1, 256, 224, 224]        512
│    │    └─ChannelAttention: 3-25            [1, 256, 1, 1]            8,192
│    │    └─SpatialAttention: 3-26            [1, 1, 1, 1]              98
│    │    └─Sequential: 3-27                  [1, 256, 224, 224]        --
├─Sequential: 1-4                             [1, 512, 112, 112]        --
│    └─Bottleneck: 2-4                        [1, 512, 112, 112]        --
│    │    └─Conv2d: 3-28                      [1, 128, 224, 224]        32,768
│    │    └─BatchNorm2d: 3-29                 [1, 128, 224, 224]        256
│    │    └─Conv2d: 3-30                      [1, 128, 112, 112]        147,456
│    │    └─BatchNorm2d: 3-31                 [1, 128, 112, 112]        256
│    │    └─Conv2d: 3-32                      [1, 512, 112, 112]        65,536
│    │    └─BatchNorm2d: 3-33                 [1, 512, 112, 112]        1,024
│    │    └─ChannelAttention: 3-34            [1, 512, 1, 1]            32,768
│    │    └─SpatialAttention: 3-35            [1, 1, 1, 1]              98
│    │    └─Sequential: 3-36                  [1, 512, 112, 112]        132,096
│    └─Bottleneck: 2-5                        [1, 512, 112, 112]        --
│    │    └─Conv2d: 3-37                      [1, 128, 112, 112]        65,536
│    │    └─BatchNorm2d: 3-38                 [1, 128, 112, 112]        256
│    │    └─Conv2d: 3-39                      [1, 128, 112, 112]        147,456
│    │    └─BatchNorm2d: 3-40                 [1, 128, 112, 112]        256
│    │    └─Conv2d: 3-41                      [1, 512, 112, 112]        65,536
│    │    └─BatchNorm2d: 3-42                 [1, 512, 112, 112]        1,024
│    │    └─ChannelAttention: 3-43            [1, 512, 1, 1]            32,768
│    │    └─SpatialAttention: 3-44            [1, 1, 1, 1]              98
│    │    └─Sequential: 3-45                  [1, 512, 112, 112]        --
│    └─Bottleneck: 2-6                        [1, 512, 112, 112]        --
│    │    └─Conv2d: 3-46                      [1, 128, 112, 112]        65,536
│    │    └─BatchNorm2d: 3-47                 [1, 128, 112, 112]        256
│    │    └─Conv2d: 3-48                      [1, 128, 112, 112]        147,456
│    │    └─BatchNorm2d: 3-49                 [1, 128, 112, 112]        256
│    │    └─Conv2d: 3-50                      [1, 512, 112, 112]        65,536
│    │    └─BatchNorm2d: 3-51                 [1, 512, 112, 112]        1,024
│    │    └─ChannelAttention: 3-52            [1, 512, 1, 1]            32,768
│    │    └─SpatialAttention: 3-53            [1, 1, 1, 1]              98
│    │    └─Sequential: 3-54                  [1, 512, 112, 112]        --
│    └─Bottleneck: 2-7                        [1, 512, 112, 112]        --
│    │    └─Conv2d: 3-55                      [1, 128, 112, 112]        65,536
│    │    └─BatchNorm2d: 3-56                 [1, 128, 112, 112]        256
│    │    └─Conv2d: 3-57                      [1, 128, 112, 112]        147,456
│    │    └─BatchNorm2d: 3-58                 [1, 128, 112, 112]        256
│    │    └─Conv2d: 3-59                      [1, 512, 112, 112]        65,536
│    │    └─BatchNorm2d: 3-60                 [1, 512, 112, 112]        1,024
│    │    └─ChannelAttention: 3-61            [1, 512, 1, 1]            32,768
│    │    └─SpatialAttention: 3-62            [1, 1, 1, 1]              98
│    │    └─Sequential: 3-63                  [1, 512, 112, 112]        --
├─Sequential: 1-5                             [1, 1024, 56, 56]         --
│    └─Bottleneck: 2-8                        [1, 1024, 56, 56]         --
│    │    └─Conv2d: 3-64                      [1, 256, 112, 112]        131,072
│    │    └─BatchNorm2d: 3-65                 [1, 256, 112, 112]        512
│    │    └─Conv2d: 3-66                      [1, 256, 56, 56]          589,824
│    │    └─BatchNorm2d: 3-67                 [1, 256, 56, 56]          512
│    │    └─Conv2d: 3-68                      [1, 1024, 56, 56]         262,144
│    │    └─BatchNorm2d: 3-69                 [1, 1024, 56, 56]         2,048
│    │    └─ChannelAttention: 3-70            [1, 1024, 1, 1]           131,072
│    │    └─SpatialAttention: 3-71            [1, 1, 1, 1]              98
│    │    └─Sequential: 3-72                  [1, 1024, 56, 56]         526,336
│    └─Bottleneck: 2-9                        [1, 1024, 56, 56]         --
│    │    └─Conv2d: 3-73                      [1, 256, 56, 56]          262,144
│    │    └─BatchNorm2d: 3-74                 [1, 256, 56, 56]          512
│    │    └─Conv2d: 3-75                      [1, 256, 56, 56]          589,824
│    │    └─BatchNorm2d: 3-76                 [1, 256, 56, 56]          512
│    │    └─Conv2d: 3-77                      [1, 1024, 56, 56]         262,144
│    │    └─BatchNorm2d: 3-78                 [1, 1024, 56, 56]         2,048
│    │    └─ChannelAttention: 3-79            [1, 1024, 1, 1]           131,072
│    │    └─SpatialAttention: 3-80            [1, 1, 1, 1]              98
│    │    └─Sequential: 3-81                  [1, 1024, 56, 56]         --
│    └─Bottleneck: 2-10                       [1, 1024, 56, 56]         --
│    │    └─Conv2d: 3-82                      [1, 256, 56, 56]          262,144
│    │    └─BatchNorm2d: 3-83                 [1, 256, 56, 56]          512
│    │    └─Conv2d: 3-84                      [1, 256, 56, 56]          589,824
│    │    └─BatchNorm2d: 3-85                 [1, 256, 56, 56]          512
│    │    └─Conv2d: 3-86                      [1, 1024, 56, 56]         262,144
│    │    └─BatchNorm2d: 3-87                 [1, 1024, 56, 56]         2,048
│    │    └─ChannelAttention: 3-88            [1, 1024, 1, 1]           131,072
│    │    └─SpatialAttention: 3-89            [1, 1, 1, 1]              98
│    │    └─Sequential: 3-90                  [1, 1024, 56, 56]         --
│    └─Bottleneck: 2-11                       [1, 1024, 56, 56]         --
│    │    └─Conv2d: 3-91                      [1, 256, 56, 56]          262,144
│    │    └─BatchNorm2d: 3-92                 [1, 256, 56, 56]          512
│    │    └─Conv2d: 3-93                      [1, 256, 56, 56]          589,824
│    │    └─BatchNorm2d: 3-94                 [1, 256, 56, 56]          512
│    │    └─Conv2d: 3-95                      [1, 1024, 56, 56]         262,144
│    │    └─BatchNorm2d: 3-96                 [1, 1024, 56, 56]         2,048
│    │    └─ChannelAttention: 3-97            [1, 1024, 1, 1]           131,072
│    │    └─SpatialAttention: 3-98            [1, 1, 1, 1]              98
│    │    └─Sequential: 3-99                  [1, 1024, 56, 56]         --
│    └─Bottleneck: 2-12                       [1, 1024, 56, 56]         --
│    │    └─Conv2d: 3-100                     [1, 256, 56, 56]          262,144
│    │    └─BatchNorm2d: 3-101                [1, 256, 56, 56]          512
│    │    └─Conv2d: 3-102                     [1, 256, 56, 56]          589,824
│    │    └─BatchNorm2d: 3-103                [1, 256, 56, 56]          512
│    │    └─Conv2d: 3-104                     [1, 1024, 56, 56]         262,144
│    │    └─BatchNorm2d: 3-105                [1, 1024, 56, 56]         2,048
│    │    └─ChannelAttention: 3-106           [1, 1024, 1, 1]           131,072
│    │    └─SpatialAttention: 3-107           [1, 1, 1, 1]              98
│    │    └─Sequential: 3-108                 [1, 1024, 56, 56]         --
│    └─Bottleneck: 2-13                       [1, 1024, 56, 56]         --
│    │    └─Conv2d: 3-109                     [1, 256, 56, 56]          262,144
│    │    └─BatchNorm2d: 3-110                [1, 256, 56, 56]          512
│    │    └─Conv2d: 3-111                     [1, 256, 56, 56]          589,824
│    │    └─BatchNorm2d: 3-112                [1, 256, 56, 56]          512
│    │    └─Conv2d: 3-113                     [1, 1024, 56, 56]         262,144
│    │    └─BatchNorm2d: 3-114                [1, 1024, 56, 56]         2,048
│    │    └─ChannelAttention: 3-115           [1, 1024, 1, 1]           131,072
│    │    └─SpatialAttention: 3-116           [1, 1, 1, 1]              98
│    │    └─Sequential: 3-117                 [1, 1024, 56, 56]         --
├─Sequential: 1-6                             [1, 2048, 28, 28]         --
│    └─Bottleneck: 2-14                       [1, 2048, 28, 28]         --
│    │    └─Conv2d: 3-118                     [1, 512, 56, 56]          524,288
│    │    └─BatchNorm2d: 3-119                [1, 512, 56, 56]          1,024
│    │    └─Conv2d: 3-120                     [1, 512, 28, 28]          2,359,296
│    │    └─BatchNorm2d: 3-121                [1, 512, 28, 28]          1,024
│    │    └─Conv2d: 3-122                     [1, 2048, 28, 28]         1,048,576
│    │    └─BatchNorm2d: 3-123                [1, 2048, 28, 28]         4,096
│    │    └─ChannelAttention: 3-124           [1, 2048, 1, 1]           524,288
│    │    └─SpatialAttention: 3-125           [1, 1, 1, 1]              98
│    │    └─Sequential: 3-126                 [1, 2048, 28, 28]         2,101,248
│    └─Bottleneck: 2-15                       [1, 2048, 28, 28]         --
│    │    └─Conv2d: 3-127                     [1, 512, 28, 28]          1,048,576
│    │    └─BatchNorm2d: 3-128                [1, 512, 28, 28]          1,024
│    │    └─Conv2d: 3-129                     [1, 512, 28, 28]          2,359,296
│    │    └─BatchNorm2d: 3-130                [1, 512, 28, 28]          1,024
│    │    └─Conv2d: 3-131                     [1, 2048, 28, 28]         1,048,576
│    │    └─BatchNorm2d: 3-132                [1, 2048, 28, 28]         4,096
│    │    └─ChannelAttention: 3-133           [1, 2048, 1, 1]           524,288
│    │    └─SpatialAttention: 3-134           [1, 1, 1, 1]              98
│    │    └─Sequential: 3-135                 [1, 2048, 28, 28]         --
│    └─Bottleneck: 2-16                       [1, 2048, 28, 28]         --
│    │    └─Conv2d: 3-136                     [1, 512, 28, 28]          1,048,576
│    │    └─BatchNorm2d: 3-137                [1, 512, 28, 28]          1,024
│    │    └─Conv2d: 3-138                     [1, 512, 28, 28]          2,359,296
│    │    └─BatchNorm2d: 3-139                [1, 512, 28, 28]          1,024
│    │    └─Conv2d: 3-140                     [1, 2048, 28, 28]         1,048,576
│    │    └─BatchNorm2d: 3-141                [1, 2048, 28, 28]         4,096
│    │    └─ChannelAttention: 3-142           [1, 2048, 1, 1]           524,288
│    │    └─SpatialAttention: 3-143           [1, 1, 1, 1]              98
│    │    └─Sequential: 3-144                 [1, 2048, 28, 28]         --
├─AdaptiveAvgPool2d: 1-7                      [1, 2048, 1, 1]           --
├─Linear: 1-8                                 [1, 1000]                 2,049,000
===============================================================================================
Total params: 28,065,864
Trainable params: 28,065,864
Non-trainable params: 0
Total mult-adds (G): 63.60
===============================================================================================
Input size (MB): 0.60
Forward/backward pass size (MB): 2691.18
Params size (MB): 112.26
Estimated Total Size (MB): 2804.04
===============================================================================================


你可能感兴趣的:(经典网络模型,人工智能,深度学习,注意力机制,CBAM,神经网络)