Hadoop核心模块——HDFS详解(2)

1.HDFS前言
2.HDFS( Hadoop distributed File System )
设计思想
分而治之:将大文件、大批量文件,分布式存放在大量服务器上,以便于采取分而治之的方式对海量数据进行运算分析;

在大数据系统中作用:
为各类分布式运算框架(如:mapreduce,spark,hive , tez,……)提供数据存储服务

重点概念:文件切块,副本存放,元数据

  1. HDFS的概念和特性
    首先,它是一个文件系统,用于存储文件,通过统一的命名空间——目录树来定位文件

其次,它是分布式的,由很多服务器联合起来实现其功能,集群中的服务器有各自的角色;

重要特性如下:
(1)HDFS中的文件在物理上是分块存储(block),块的大小可以通过配置参数( dfs.blocksize)来规定,默认大小在hadoop2.x版本中是128M,老版本中是64M

(2)HDFS文件系统会给客户端提供一个统一的抽象目录树,客户端通过路径来访问文件,形如:hdfs://namenode:port/dir-a/dir-b/dir-c/file.data

(3)目录结构及文件分块信息(元数据)的管理由namenode节点承担
——namenode是HDFS集群主节点,负责维护整个hdfs文件系统的目录树,以及每一个路径(文件)所对应的block块信息(block的id,及所在的datanode服务器)

(4)文件的各个block的存储管理由datanode节点承担
---- datanode是HDFS集群从节点,每一个block都可以在多个datanode上存储多个副本(副本数量也可以通过参数设置dfs.replication)

(5)HDFS是设计成适应一次写入,多次读出的场景,且不支持文件的修改

(注:适合用来做数据分析,并不适合用来做网盘应用,因为,不便修改,延迟大,网络开销大,成本太高)
HDFS基本操作篇
3. HDFS的shell(命令行客户端)操作
3.1 HDFS命令行客户端使用

  [-appendToFile  ... ]
        [-cat [-ignoreCrc]  ...]
        [-checksum  ...]
        [-chgrp [-R] GROUP PATH...]
        [-chmod [-R] [,MODE]... | OCTALMODE> PATH...]
        [-chown [-R] [OWNER][:[GROUP]] PATH...]
        [-copyFromLocal [-f] [-p]  ... ]
        [-copyToLocal [-p] [-ignoreCrc] [-crc]  ... ]
        [-count [-q]  ...]
        [-cp [-f] [-p]  ... ]
        [-createSnapshot  []]
        [-deleteSnapshot  ]
        [-df [-h] [ ...]]
        [-du [-s] [-h]  ...]
        [-expunge]
        [-get [-p] [-ignoreCrc] [-crc]  ... ]
        [-getfacl [-R] ]
        [-getmerge [-nl]  ]
        [-help [cmd ...]]
        [-ls [-d] [-h] [-R] [ ...]]
        [-mkdir [-p]  ...]
        [-moveFromLocal  ... ]
        [-moveToLocal  ]
        [-mv  ... ]
        [-put [-f] [-p]  ... ]
        [-renameSnapshot   ]
        [-rm [-f] [-r|-R] [-skipTrash]  ...]
        [-rmdir [--ignore-fail-on-non-empty] <dir> ...]
        [-setfacl [-R] [{-b|-k} {-m|-x } ]|[--set  ]]
        [-setrep [-R] [-w]   ...]
        [-stat [format]  ...]
        [-tail [-f] ]
        [-test -[defsz] ]
        [-text [-ignoreCrc]  ...]
        [-touchz  ...]
        [-usage [cmd ...]]

3.2 常用命令参数介绍


-help             
功能:输出这个命令参数手册
-ls                  
功能:显示目录信息
示例: hadoop fs -ls hdfs://hadoop-server01:9000/
备注:这些参数中,所有的hdfs路径都可以简写
-->hadoop fs -ls /   等同于上一条命令的效果
-mkdir              
功能:在hdfs上创建目录
示例:hadoop fs  -mkdir  -p  /aaa/bbb/cc/dd
-moveFromLocal            
功能:从本地剪切粘贴到hdfs
示例:hadoop  fs  - moveFromLocal  /home/hadoop/a.txt  /aaa/bbb/cc/dd
-moveToLocal              
功能:从hdfs剪切粘贴到本地
示例:hadoop  fs  - moveToLocal   /aaa/bbb/cc/dd  /home/hadoop/a.txt 
--appendToFile  
功能:追加一个文件到已经存在的文件末尾
示例:hadoop  fs  -appendToFile  ./hello.txt  hdfs://hadoop-server01:9000/hello.txt
可以简写为:
Hadoop  fs  -appendToFile  ./hello.txt  /hello.txt

-cat  
功能:显示文件内容  
示例:hadoop fs -cat  /hello.txt

-tail                 
功能:显示一个文件的末尾
示例:hadoop  fs  -tail  /weblog/access_log.1
-text                  
功能:以字符形式打印一个文件的内容
示例:hadoop  fs  -text  /weblog/access_log.1
-chgrp 
-chmod
-chown
功能:linux文件系统中的用法一样,对文件所属权限
示例:
hadoop  fs  -chmod  666  /hello.txt
hadoop  fs  -chown  someuser:somegrp   /hello.txt
-copyFromLocal    
功能:从本地文件系统中拷贝文件到hdfs路径去
示例:hadoop  fs  -copyFromLocal  ./jdk.tar.gz  /aaa/
-copyToLocal      
功能:从hdfs拷贝到本地
示例:hadoop fs -copyToLocal /aaa/jdk.tar.gz
-cp              
功能:从hdfs的一个路径拷贝hdfs的另一个路径
示例: hadoop  fs  -cp  /aaa/jdk.tar.gz  /bbb/jdk.tar.gz.2

-mv                     
功能:在hdfs目录中移动文件
示例: hadoop  fs  -mv  /aaa/jdk.tar.gz  /
-get              
功能:等同于copyToLocal,就是从hdfs下载文件到本地
示例:hadoop fs -get  /aaa/jdk.tar.gz
-getmerge             
功能:合并下载多个文件
示例:比如hdfs的目录 /aaa/下有多个文件:log.1, log.2,log.3,...
hadoop fs -getmerge /aaa/log.* ./log.sum
-put                
功能:等同于copyFromLocal
示例:hadoop  fs  -put  /aaa/jdk.tar.gz  /bbb/jdk.tar.gz.2

-rm                
功能:删除文件或文件夹
示例:hadoop fs -rm -r /aaa/bbb/

-rmdir                 
功能:删除空目录
示例:hadoop  fs  -rmdir   /aaa/bbb/ccc

4.1 概述
1.HDFS集群分为两大角色:NameNode、DataNode、
2.NameNode负责管理整个文件系统的元数据(block日志,镜像文件fsimage )
3.DataNode 负责管理用户的文件数据块
4.文件会按照固定的大小(blocksize)切成若干块后分布式存储在若干台datanode上
5.每一个文件块可以有多个副本,并存放在不同的datanode上
6.Datanode会定期向Namenode汇报自身所保存的文件block信息,而namenode则会负责保持文件的副本数量
7.HDFS的内部工作机制对客户端保持透明,客户端请求访问HDFS都是通过向namenode申请来进行

4.2.3 详细步骤解析
1、客户端根namenode通信请求上传文件,namenode检查目标文件是否已存在,父目录是否存在
2、namenode返回是否可以上传
3、client请求第一个 block该传输到哪些datanode服务器上
4、namenode返回3个datanode服务器ABC
5、client请求3台dn中的一台A上传数据(本质上是一个RPC调用,建立pipeline),A收到请求会继续调用B,然后B调用C,将真个pipeline建立完成,逐级返回客户端
6、client开始往A上传第一个block(先从磁盘读取数据放到一个本地内存缓存),以packet为单位,A收到一个packet就会传给B,B传给C;A每传一个packet会放入一个应答队列等待应答
7、当一个block传输完成之后,client再次请求namenode上传第二个block的服务器。
4.3. HDFS读数据流程
4.3.1 概述
客户端将要读取的文件路径发送给namenode,namenode获取文件的元信息(主要是block的存放位置信息)返回给客户端,客户端根据返回的信息找到相应datanode逐个获取文件的block并在客户端本地进行数据追加合并从而获得整个文件

  1. NAMENODE工作机制
    学习目标:理解namenode的工作机制尤其是元数据管理机制,以增强对HDFS工作原理的理解,及培养hadoop集群运营中“性能调优”、“namenode”故障问题的分析解决能力
    5.1 NAMENODE职责
    NAMENODE职责:
    负责客户端请求的响应
    元数据的管理(查询,修改)
    5.2 元数据管理
    namenode对数据的管理采用了三种存储形式:
    内存元数据(NameSystem)
    磁盘元数据镜像文件
    数据操作日志文件(可通过日志运算出元数据)
    5.2.1 元数据存储机制
    A、内存中有一份完整的元数据(内存meta data)
    B、磁盘有一个“准完整”的元数据镜像(fsimage)文件(在namenode的工作目录中)
    C、用于衔接内存metadata和持久化元数据镜像fsimage之间的操作日志(edits文件)注:当客户端对hdfs中的文件进行新增或者修改操作,操作记录首先被记入edits日志文件中,当客户端操作成功后,相应的元数据会更新到内存meta.data中

5.2.3 元数据的checkpoint
每隔一段时间,会由secondary namenode将namenode上积累的所有edits和一个最新的fsimage下载到本地,并加载到内存进行merge(这个过程称为checkpoint)

secondary Namenode 的作用:为namenode提供服务: 合并日志和镜像文件.

checkpoint的附带作用
namenode和secondary namenode的工作目录存储结构完全相同,所以,当namenode故障退出需要重新恢复时,可以从secondary namenode的工作目录中将fsimage拷贝到namenode的工作目录,以恢复namenode的元数据

  1. DATANODE的工作机制
    6.1 概述
    1、Datanode工作职责:
    存储管理用户的文件块数据
    定期向namenode汇报自身所持有的block信息(通过心跳信息上报)
    (这点很重要,因为,当集群中发生某些block副本失效时,集群如何恢复block初始副本数量的问题)
dfs.blockreport.intervalMsec 3600000 Determines block reporting interval in milliseconds.

2、Datanode掉线判断时限参数
datanode进程死亡或者网络故障造成datanode无法与namenode通信,namenode不会立即把该节点判定为死亡,要经过一段时间,这段时间暂称作超时时长。HDFS默认的超时时长为10分钟+30秒。如果定义超时时间为timeout,则超时时长的计算公式为:
timeout = 2 * heartbeat.recheck.interval + 10 * dfs.heartbeat.interval。
而默认的heartbeat.recheck.interval 大小为5分钟,dfs.heartbeat.interval默认为3秒。
需要注意的是hdfs-site.xml 配置文件中的heartbeat.recheck.interval的单位为毫秒,dfs.heartbeat.interval的单位为秒。所以,举个例子,如果heartbeat.recheck.interval设置为5000(毫秒),dfs.heartbeat.interval设置为3(秒,默认),则总的超时时间为40秒。

<property>
        <name>heartbeat.recheck.intervalname>
        <value>2000value>
property>
<property>
        <name>dfs.heartbeat.intervalname>
        <value>1value>
property>

7.4 HDFS客户端操作数据代码示例:

public class HdfsClient {

	FileSystem fs = null;

	@Before
	public void init() throws Exception {

		// 构造一个配置参数对象,设置一个参数:我们要访问的hdfs的URI
		// 从而FileSystem.get()方法就知道应该是去构造一个访问hdfs文件系统的客户端,以及hdfs的访问地址
		// new Configuration();的时候,它就会去加载jar包中的hdfs-default.xml
		// 然后再加载classpath下的hdfs-site.xml
		Configuration conf = new Configuration();
		conf.set("fs.defaultFS", "hdfs://hdp-node01:9000");
		/**
		 * 参数优先级: 1、客户端代码中设置的值 2、classpath下的用户自定义配置文件 3、然后是服务器的默认配置
		 */
		conf.set("dfs.replication", "3");

		// 获取一个hdfs的访问客户端,根据参数,这个实例应该是DistributedFileSystem的实例
		// fs = FileSystem.get(conf);

		// 如果这样去获取,那conf里面就可以不要配"fs.defaultFS"参数,而且,这个客户端的身份标识已经是hadoop用户
		fs = FileSystem.get(new URI("hdfs://hdp-node01:9000"), conf, "hadoop");

	}

	/**
	 * 往hdfs上传文件
	 * 
	 * @throws Exception
	 */
	@Test
	public void testAddFileToHdfs() throws Exception {

		// 要上传的文件所在的本地路径
		Path src = new Path("g:/redis-recommend.zip");
		// 要上传到hdfs的目标路径
		Path dst = new Path("/aaa");
		fs.copyFromLocalFile(src, dst);
		fs.close();
	}

	/**
	 * 从hdfs中复制文件到本地文件系统
	 * 
	 * @throws IOException
	 * @throws IllegalArgumentException
	 */
	@Test
	public void testDownloadFileToLocal() throws IllegalArgumentException, IOException {
		fs.copyToLocalFile(new Path("/jdk-7u65-linux-i586.tar.gz"), new Path("d:/"));
		fs.close();
	}

	@Test
	public void testMkdirAndDeleteAndRename() throws IllegalArgumentException, IOException {

		// 创建目录
		fs.mkdirs(new Path("/a1/b1/c1"));

		// 删除文件夹 ,如果是非空文件夹,参数2必须给值true
		fs.delete(new Path("/aaa"), true);

		// 重命名文件或文件夹
		fs.rename(new Path("/a1"), new Path("/a2"));

	}

	/**
	 * 查看目录信息,只显示文件
	 * 
	 * @throws IOException
	 * @throws IllegalArgumentException
	 * @throws FileNotFoundException
	 */
	@Test
	public void testListFiles() throws FileNotFoundException, IllegalArgumentException, IOException {

		// 思考:为什么返回迭代器,而不是List之类的容器
		RemoteIterator<LocatedFileStatus> listFiles = fs.listFiles(new Path("/"), true);

		while (listFiles.hasNext()) {
			LocatedFileStatus fileStatus = listFiles.next();
			System.out.println(fileStatus.getPath().getName());
			System.out.println(fileStatus.getBlockSize());
			System.out.println(fileStatus.getPermission());
			System.out.println(fileStatus.getLen());
			BlockLocation[] blockLocations = fileStatus.getBlockLocations();
			for (BlockLocation bl : blockLocations) {
				System.out.println("block-length:" + bl.getLength() + "--" + "block-offset:" + bl.getOffset());
				String[] hosts = bl.getHosts();
				for (String host : hosts) {
					System.out.println(host);
				}
			}
			System.out.println("--------------为angelababy打印的分割线--------------");
		}
	}

	/**
	 * 查看文件及文件夹信息
	 * 
	 * @throws IOException
	 * @throws IllegalArgumentException
	 * @throws FileNotFoundException
	 */
	@Test
	public void testListAll() throws FileNotFoundException, IllegalArgumentException, IOException {

		FileStatus[] listStatus = fs.listStatus(new Path("/"));

		String flag = "d--             ";
		for (FileStatus fstatus : listStatus) {
			if (fstatus.isFile())  flag = "f--         ";
			System.out.println(flag + fstatus.getPath().getName());
		}
	}
}

你可能感兴趣的:(java,hadoop,大数据,hadoop,java)