ModelArts部署紫东太初大模型推理服务经验分享

零、项目背景
需要在ModelArts上部署微调后的下游任务推理服务。
主要踩坑点:
一、环境准备
MindSpore 1.6.1
Docker 20.10.17
紫东太初模型代码
https://gitee.com/mindspore/o...
ckpt权重文件
ModelArts账号
二、模型转换
1.参照测试代码初始化模型并加载ckpt

2.使用MindSpore.export(net, inputs, filename=“**”, file_format=“MINDIR”)导出MINDIR模型

模型格式:当前版本AIR和ONNX均有单网络2G的模型大小限制,目前采用MINDIR进行在线推理。(MINDIR对于超过2G的模型会自动进行切分)

三、编写推理服务代码
使用Flask部署服务,代码参考
https://gitee.com/HUAWEI-ASCE...
模型推理部分代码
代码参考同上,需要注意在初始化的时候异步加载模型,避免ModelArts拉起服务时模型加载超时导致异常退出。
四、制作推理服务镜像
参考同上
五、ModelArts镜像上传部署
步骤参考ModelArts文档,需要注意需在日志报Warm Up Success后才可正常使用服务,否则有可能超时或服务异常退出。

你可能感兴趣的:(机器学习数据挖掘人工智能)