ID3算法最早是由罗斯昆兰(J. Ross Quinlan)于1975年在悉尼大学提出的一种分类预测算法,算法的核心是“信息熵”。ID3算法通过计算每个属性的信息增益,认为信息增益高的是好属性,每次划分选取信息增益最高的属性为划分标准,重复这个过程,直至生成一个能完美分类训练样例的决策树。
决策树是对数据进行分类,以此达到预测的目的。该决策树方法先根据训练集数据形成决策树,如果该树不能对所有对象给出正确的分类,那么选择一些例外加入到训练集数据中,重复该过程一直到形成正确的决策集。决策树代表着决策集的树形结构。
决策树由决策结点、分支和叶子组成。决策树中最上面的结点为根结点,每个分支是一个新的决策结点,或者是树的叶子。每个决策结点代表一个问题或决策,通常对应于待分类对象的属性。每一个叶子结点代表一种可能的分类结果。沿决策树从上到下遍历的过程中,在每个结点都会遇到一个测试,对每个结点上问题的不同的测试输出导致不同的分支,最后会到达一个叶子结点,这个过程就是利用决策树进行分类的过程,利用若干个变量来判断所属的类别。
所使用的样本数据有一定的要求,ID3是:
ID3决定哪些属性如何是最好的。一个统计特性,被称为信息增益,使用熵得到给定属性衡量培训例子带入目标类分开。信息增益最高的信息(信息是最有益的分类)被选择。为了明确增益,我们首先从信息论借用一个定义,叫做熵。每个属性都有一个熵。
ID3决策树是一种非常重要的用来处理分类问题的结构,它形似一个嵌套N层的IF…ELSE结构,但是它的判断标准不再是一个关系表达式,而是对应的模块的信息增益。它通过信息增益的大小,从根节点开始,选择一个分支,如同进入一个IF结构的statement,通过属性值的取值不同进入新的IF结构的statement,直到到达叶子节点,找到它所属的“分类”标签。
它的流程图是一颗无法保证平衡的多叉树,每一个父节点都是一个判断模块,通过判断,当前的向量会进入它的某一个子节点中,这个子节点是判断模块或者终止模块(叶子节点),当且仅当这个向量到达叶子节点,它也就找到了它的“分类”标签。
ID3决策树通过一个固定的训练集是可以形成一颗永久的“树”的,这课树可以进行保存并且运用到不同的测试集中,唯一的要求就是测试集和训练集需要是结构等价的。这个训练过程就是根据训练集创建规则的过程,这也是机器学习的过程。
西瓜数据集.txt:
青绿 蜷缩 浊响 清晰 凹陷 硬滑 是
乌黑 蜷缩 沉闷 清晰 凹陷 硬滑 是
乌黑 蜷缩 浊响 清晰 凹陷 硬滑 是
青绿 蜷缩 沉闷 清晰 凹陷 硬滑 是
浅白 蜷缩 浊响 清晰 凹陷 硬滑 是
青绿 稍蜷 浊响 清晰 稍凹 软粘 是
乌黑 稍蜷 浊响 稍糊 稍凹 软粘 是
乌黑 稍蜷 浊响 清晰 稍凹 硬滑 是
乌黑 稍蜷 沉闷 稍糊 稍凹 硬滑 否
青绿 硬挺 清脆 清晰 平坦 软粘 否
浅白 硬挺 清脆 模糊 平坦 硬滑 否
浅白 蜷缩 浊响 模糊 平坦 软粘 否
青绿 稍蜷 浊响 稍糊 凹陷 硬滑 否
浅白 稍蜷 沉闷 稍糊 凹陷 硬滑 否
乌黑 稍蜷 浊响 清晰 稍凹 软粘 否
浅白 蜷缩 浊响 模糊 平坦 硬滑 否
青绿 蜷缩 沉闷 稍糊 稍凹 硬滑 否
将txt文档转为csv方法:txt转换成csv
import numpy as np
import pandas as pd
import sklearn.tree as st
import math
import matplotlib
import os
import matplotlib.pyplot as plt
data = pd.read_csv('F:/西瓜数据集.csv',header=None)
data
def calcEntropy(dataSet):
mD = len(dataSet)
dataLabelList = [x[-1] for x in dataSet]
dataLabelSet = set(dataLabelList)
ent = 0
for label in dataLabelSet:
mDv = dataLabelList.count(label)
prop = float(mDv) / mD
ent = ent - prop * np.math.log(prop, 2)
return ent
# index - 要拆分的特征的下标
# feature - 要拆分的特征
# 返回值 - dataSet中index所在特征为feature,且去掉index一列的集合
def splitDataSet(dataSet, index, feature):
splitedDataSet = []
mD = len(dataSet)
for data in dataSet:
if(data[index] == feature):
sliceTmp = data[:index]
sliceTmp.extend(data[index + 1:])
splitedDataSet.append(sliceTmp)
return splitedDataSet
# 返回值 - 最好的特征的下标
def chooseBestFeature(dataSet):
entD = calcEntropy(dataSet)
mD = len(dataSet)
featureNumber = len(dataSet[0]) - 1
maxGain = -100
maxIndex = -1
for i in range(featureNumber):
entDCopy = entD
featureI = [x[i] for x in dataSet]
featureSet = set(featureI)
for feature in featureSet:
splitedDataSet = splitDataSet(dataSet, i, feature) # 拆分数据集
mDv = len(splitedDataSet)
entDCopy = entDCopy - float(mDv) / mD * calcEntropy(splitedDataSet)
if(maxIndex == -1):
maxGain = entDCopy
maxIndex = i
elif(maxGain < entDCopy):
maxGain = entDCopy
maxIndex = i
return maxIndex
# 返回值 - 标签
def mainLabel(labelList):
labelRec = labelList[0]
maxLabelCount = -1
labelSet = set(labelList)
for label in labelSet:
if(labelList.count(label) > maxLabelCount):
maxLabelCount = labelList.count(label)
labelRec = label
return labelRec
def createFullDecisionTree(dataSet, featureNames, featureNamesSet, labelListParent):
labelList = [x[-1] for x in dataSet]
if(len(dataSet) == 0):
return mainLabel(labelListParent)
elif(len(dataSet[0]) == 1): #没有可划分的属性了
return mainLabel(labelList) #选出最多的label作为该数据集的标签
elif(labelList.count(labelList[0]) == len(labelList)): # 全部都属于同一个Label
return labelList[0]
bestFeatureIndex = chooseBestFeature(dataSet)
bestFeatureName = featureNames.pop(bestFeatureIndex)
myTree = {bestFeatureName: {}}
featureList = featureNamesSet.pop(bestFeatureIndex)
featureSet = set(featureList)
for feature in featureSet:
featureNamesNext = featureNames[:]
featureNamesSetNext = featureNamesSet[:][:]
splitedDataSet = splitDataSet(dataSet, bestFeatureIndex, feature)
myTree[bestFeatureName][feature] = createFullDecisionTree(splitedDataSet, featureNamesNext, featureNamesSetNext, labelList)
return myTree
# 返回值
# dataSet 数据集
# featureNames 标签
# featureNamesSet 列标签
def readWatermelonDataSet():
dataSet = data.values.tolist()
featureNames =['色泽', '根蒂', '敲击', '纹理', '脐部', '触感']
#获取featureNamesSet
featureNamesSet = []
for i in range(len(dataSet[0]) - 1):
col = [x[i] for x in dataSet]
colSet = set(col)
featureNamesSet.append(list(colSet))
return dataSet, featureNames, featureNamesSet
# 能够显示中文
matplotlib.rcParams['font.sans-serif'] = ['SimHei']
matplotlib.rcParams['font.serif'] = ['SimHei']
# 分叉节点,也就是决策节点
decisionNode = dict(boxstyle="sawtooth", fc="0.8")
# 叶子节点
leafNode = dict(boxstyle="round4", fc="0.8")
# 箭头样式
arrow_args = dict(arrowstyle="<-")
def plotNode(nodeTxt, centerPt, parentPt, nodeType):
"""
绘制一个节点
:param nodeTxt: 描述该节点的文本信息
:param centerPt: 文本的坐标
:param parentPt: 点的坐标,这里也是指父节点的坐标
:param nodeType: 节点类型,分为叶子节点和决策节点
:return:
"""
createPlot.ax1.annotate(nodeTxt, xy=parentPt, xycoords='axes fraction',
xytext=centerPt, textcoords='axes fraction',
va="center", ha="center", bbox=nodeType, arrowprops=arrow_args)
def getNumLeafs(myTree):
"""
获取叶节点的数目
:param myTree:
:return:
"""
# 统计叶子节点的总数
numLeafs = 0
# 得到当前第一个key,也就是根节点
firstStr = list(myTree.keys())[0]
# 得到第一个key对应的内容
secondDict = myTree[firstStr]
# 递归遍历叶子节点
for key in secondDict.keys():
# 如果key对应的是一个字典,就递归调用
if type(secondDict[key]).__name__ == 'dict':
numLeafs += getNumLeafs(secondDict[key])
# 不是的话,说明此时是一个叶子节点
else:
numLeafs += 1
return numLeafs
def getTreeDepth(myTree):
"""
得到数的深度层数
:param myTree:
:return:
"""
# 用来保存最大层数
maxDepth = 0
# 得到根节点
firstStr = list(myTree.keys())[0]
# 得到key对应的内容
secondDic = myTree[firstStr]
# 遍历所有子节点
for key in secondDic.keys():
# 如果该节点是字典,就递归调用
if type(secondDic[key]).__name__ == 'dict':
# 子节点的深度加1
thisDepth = 1 + getTreeDepth(secondDic[key])
# 说明此时是叶子节点
else:
thisDepth = 1
# 替换最大层数
if thisDepth > maxDepth:
maxDepth = thisDepth
return maxDepth
def plotMidText(cntrPt, parentPt, txtString):
"""
计算出父节点和子节点的中间位置,填充信息
:param cntrPt: 子节点坐标
:param parentPt: 父节点坐标
:param txtString: 填充的文本信息
:return:
"""
# 计算x轴的中间位置
xMid = (parentPt[0]-cntrPt[0])/2.0 + cntrPt[0]
# 计算y轴的中间位置
yMid = (parentPt[1]-cntrPt[1])/2.0 + cntrPt[1]
# 进行绘制
createPlot.ax1.text(xMid, yMid, txtString)
def plotTree(myTree, parentPt, nodeTxt):
"""
绘制出树的所有节点,递归绘制
:param myTree: 树
:param parentPt: 父节点的坐标
:param nodeTxt: 节点的文本信息
:return:
"""
# 计算叶子节点数
numLeafs = getNumLeafs(myTree=myTree)
# 计算树的深度
depth = getTreeDepth(myTree=myTree)
# 得到根节点的信息内容
firstStr = list(myTree.keys())[0]
# 计算出当前根节点在所有子节点的中间坐标,也就是当前x轴的偏移量加上计算出来的根节点的中心位置作为x轴(比如说第一次:初始的x偏移量为:-1/2W,计算出来的根节点中心位置为:(1+W)/2W,相加得到:1/2),当前y轴偏移量作为y轴
cntrPt = (plotTree.xOff + (1.0 + float(numLeafs))/2.0/plotTree.totalW, plotTree.yOff)
# 绘制该节点与父节点的联系
plotMidText(cntrPt, parentPt, nodeTxt)
# 绘制该节点
plotNode(firstStr, cntrPt, parentPt, decisionNode)
# 得到当前根节点对应的子树
secondDict = myTree[firstStr]
# 计算出新的y轴偏移量,向下移动1/D,也就是下一层的绘制y轴
plotTree.yOff = plotTree.yOff - 1.0/plotTree.totalD
# 循环遍历所有的key
for key in secondDict.keys():
# 如果当前的key是字典的话,代表还有子树,则递归遍历
if isinstance(secondDict[key], dict):
plotTree(secondDict[key], cntrPt, str(key))
else:
# 计算新的x轴偏移量,也就是下个叶子绘制的x轴坐标向右移动了1/W
plotTree.xOff = plotTree.xOff + 1.0/plotTree.totalW
# 打开注释可以观察叶子节点的坐标变化
# print((plotTree.xOff, plotTree.yOff), secondDict[key])
# 绘制叶子节点
plotNode(secondDict[key], (plotTree.xOff, plotTree.yOff), cntrPt, leafNode)
# 绘制叶子节点和父节点的中间连线内容
plotMidText((plotTree.xOff, plotTree.yOff), cntrPt, str(key))
# 返回递归之前,需要将y轴的偏移量增加,向上移动1/D,也就是返回去绘制上一层的y轴
plotTree.yOff = plotTree.yOff + 1.0/plotTree.totalD
def createPlot(inTree):
"""
需要绘制的决策树
:param inTree: 决策树字典
:return:
"""
# 创建一个图像
fig = plt.figure(1, facecolor='white')
fig.clf()
axprops = dict(xticks=[], yticks=[])
createPlot.ax1 = plt.subplot(111, frameon=False, **axprops)
# 计算出决策树的总宽度
plotTree.totalW = float(getNumLeafs(inTree))
# 计算出决策树的总深度
plotTree.totalD = float(getTreeDepth(inTree))
# 初始的x轴偏移量,也就是-1/2W,每次向右移动1/W,也就是第一个叶子节点绘制的x坐标为:1/2W,第二个:3/2W,第三个:5/2W,最后一个:(W-1)/2W
plotTree.xOff = -0.5/plotTree.totalW
# 初始的y轴偏移量,每次向下或者向上移动1/D
plotTree.yOff = 1.0
# 调用函数进行绘制节点图像
plotTree(inTree, (0.5, 1.0), '')
# 绘制
plt.show()
dataSet, featureNames, featureNamesSet=readWatermelonDataSet()
testTree= createFullDecisionTree(dataSet, featureNames, featureNamesSet,featureNames)
createPlot(testTree)
[1] 西瓜决策树-纯算法
[2] python机器学习笔记:ID3决策树算法实战
[3] 机器学习六(决策树ID3算法原理和实现——西瓜书学习笔记)