CPU, GPU, TPU, NPU, DPU介绍

1. CPU

中央处理单元

CPU的结构主要包括运算器(ALU, Arithmetic and Logic Unit)、控制单元(CU, Control Unit)、寄存器(Register)、高速缓存器(Cache)和它们之间通讯的数据、控制及状态的总线。

简单来说就是:计算单元、控制单元和存储单元,架构如下图所示:

CPU, GPU, TPU, NPU, DPU介绍_第1张图片

从字面上我们也很好理解,计算单元主要执行算术运算、移位等操作以及地址运算和转换;存储单元主要用于保存运算中产生的数据以及指令等;控制单元则对指令译码,并且发出为完成每条指令所要执行的各个操作的控制信号。 

2. GPU

图形处理单元

并行计算(Parallel Computing)是指同时使用多种计算资源解决计算问题的过程,是提高计算机系统计算速度和处理能力的一种有效手段。它的基本思想是用多个处理器来共同求解同一问题,即将被求解的问题分解成若干个部分,各部分均由一个独立的处理机来并行计算。

并行计算可分为时间上的并行和空间上的并行。

时间上的并行是指流水线技术,比如说工厂生产食品的时候分为四步:清洗-消毒-切割-包装。如果不采用流水线,一个食品完成上述四个步骤后,下一个食品才进行处理,耗时且影响效率。但是采用流水线技术,就可以同时处理四个食品。这就是并行算法中的时间并行,在同一时间启动两个或两个以上的操作,大大提高计算性能。

空间上的并行是指多个处理机并发的执行计算,即通过网络将两个以上的处理机连接起来,达到同时计算同一个任务的不同部分,或者单个处理机无法解决的大型问题。

所以说,如果让CPU来执行这个种树任务的话,它就会一棵一棵的种,花上6个小时的时间,但是让GPU来种树,就相当于好几个人同时在种。

GPU全称为Graphics Processing Unit,中文为图形处理器,就如它的名字一样,GPU最初是用在个人电脑、工作站、游戏机和一些移动设备(如平板电脑、智能手机等)上运行绘图运算工作的微处理器。

为什么GPU特别擅长处理图像数据呢?这是因为图像上的每一个像素点都有被处理的需要,而且每个像素点处理的过程和方式都十分相似,也就成了GPU的天然温床。GPU简单架构如下图所示:
在这里插入图片描述
从架构图我们就能很明显的看出,GPU的构成相对简单,有数量众多的计算单元和超长的流水线,特别适合处理大量的类型统一的数据。

但GPU无法单独工作,必须由CPU进行控制调用才能工作。CPU可单独作用,处理复杂的逻辑运算和不同的数据类型,但当需要大量的处理类型统一的数据时,则可调用GPU进行并行计算。

3. DPU

数据处理单元

  • 基于行业标准,高性能及软件可编程的多核CPU
  • 高性能网络接口
  • 灵活、可编程的加速引擎

DPU是一种新型可编程处理器,集三个关键要素于一身。DPU是一种SOC(System On Chip),它结合了:

行业标准的、高性能及软件可编程的多核CPU,通常基于已应用广泛的Arm架构,与其的SOC组件密切配合。

高性能网络接口,能以线速或网络中的可用速度解析、处理数据,并高效地将数据传输到GPU和CPU。

各种灵活和可编程的加速引擎,可以卸载AI、机器学习、安全、电信和存储等应用,并提升性能。

4. TPU

张量处理器

CPU和GPU都是较为通用的芯片,但是有句老话说得好:万能工具的效率永远比不上专用工具。

随着人们的计算需求越来越专业化,人们希望有芯片可以更加符合自己的专业需求,这时,便产生了ASIC(专用集成电路)的概念。

ASIC是指依产品需求不同而定制化的特殊规格集成电路,由特定使用者要求和特定电子系统的需要而设计、制造。当然这概念不用记,简单来说就是定制化芯片。

因为ASIC很“专一”,只做一件事,所以它就会比CPU、GPU等能做很多件事的芯片在某件事上做的更好,实现更高的处理速度和更低的能耗。但相应的,ASIC的生产成本也非常高。

而TPU(Tensor Processing Unit, 张量处理器)就是谷歌专门为加速深层神经网络运算能力而研发的一款芯片,其实也是一款ASIC。

5. NPU

神经网络处理器

参考文献

  • https://zhuanlan.zhihu.com/p/145142691
  • https://blog.csdn.net/qq_39507748/article/details/108813307

你可能感兴趣的:(计算机基础与使用,自动驾驶,算法)