新鲜出炉的 yoloV5可视化实战项目(1)

文章目录

  • 闲谈
  • 展示效果
  • 开始
  • 改装
  • 可视化工具
    • 界面制作
    • 逻辑交互制作
  • 关键函数detect
  • 模型的初始化和权重参数的加载
  • 设置图片识别
  • 视频和摄像头
  • 知识点
  • 完整的代码
  • 演示效果

闲谈

  • 了解到目标检测算法,越来越觉得有意思,希望能做一些更有趣的东西,发现yolov5是个非常牛逼的框架,做点东西实践下,顺便记录下学习的历程,方便复习。

  • 可以到官网下载版本, 目前已更新到v7版本,我们还是用v5版本

  • 本项目的代码已上传至github点击前往

  • 如遇到问题或疑问,可以直接留言或私信

  • 祝大家学习愉快

展示效果

B站效果展示

开始

新鲜出炉的 yoloV5可视化实战项目(1)_第1张图片

  • 一般官网的代码会比较完整,需要做一些修改才能符合我们的需求
  • 下载完官网的项目后,直接运行安装依赖即可
pip install -r requirements.txt
  • 安装完运行
import torch

# Model
model = torch.hub.load('ultralytics/yolov5', 'yolov5s')  # or yolov5n - yolov5x6, custom

# Images
img = 'https://ultralytics.com/images/zidane.jpg'  # or file, Path, PIL, OpenCV, numpy, list

# Inference
results = model(img)

# Results
results.print()  # or .show(), .save(), .crop(), .pandas(), etc.
  • 方案二
python detect.py --source data/images/bus.jpg

新鲜出炉的 yoloV5可视化实战项目(1)_第2张图片
新鲜出炉的 yoloV5可视化实战项目(1)_第3张图片

改装

  • 制作一个可视化的界面
  • 编写detect.py文件
  • 逻辑关联处理

可视化工具

  • 我们这里用的是pyqt5的工具
  • 关于pyqt5 可以参考这个教程,写的很好了 前往

界面制作

新鲜出炉的 yoloV5可视化实战项目(1)_第4张图片
做完大概长这样

逻辑交互制作

def init_slots(self):
                self.ui.imgScan.clicked.connect(self.button_image_open)
                self.ui.videoScan.clicked.connect(self.button_video_open)
                self.ui.capScan.clicked.connect(self.button_camera_open)
                self.ui.loadWeight.clicked.connect(self.open_model)
                self.ui.initModel.clicked.connect(self.model_init)
                self.ui.start.clicked.connect(self.toggleState)
                self.ui.end.clicked.connect(self.endVideo)
                        # self.ui.pushButton_stop.clicked.connect(self.button_video_stop)
                        # self.ui.pushButton_finish.clicked.connect(self.finish_detect)
                self.timer_video.timeout.connect(self.show_video_frame) # 定时器超时,将槽绑定至show_video_frame
  • 这部分很简单就是绑定下函数, 这里制作了一个读取视频的定时器,方便控制视频的读取

关键函数detect

  • 这个是本项目的关键代码,核心代码,其他的都只能是辅助,同时也是最难的部分。
def detect(self, name_list, img):
                '''
                :param name_list: 文件名列表
                :param img: 待检测图片
                :return: info_show:检测输出的文字信息
                '''
                showimg = img
                # 不使用图计算
                with torch.no_grad():
                        # 填充为标准的大小,letterbox 不同于resize, 使用的是边缘填充
                        img = letterbox(img, new_shape=self.opt.img_size)[0]
                        # Convert
                        # 转换成Rgb模式
                        img = img[:, :, ::-1].transpose(2, 0, 1)  # BGR to RGB, to 3x416x416
                        # 转换成连续的内存格式,加快计算速度
                        img = np.ascontiguousarray(img)
                        # 图和ndarray的转换,并制定cpu或gpu
                        img = torch.from_numpy(img).to(self.device)
                        # 设置精度
                        img = img.half() if self.half else img.float()  # uint8 to fp16/32
                        # 归一化
                        img /= 255.0  # 0 - 255 to 0.0 - 1.0
                        # 统一格式
                        if img.ndimension() == 3:
                                # 增加一个维度
                                img = img.unsqueeze(0)
                        # Inference
                        # 使用模型预测
                        pred = self.model(img, augment=self.opt.augment)[0]
                        # Apply NMS
                        # 非极大值抑制
                        pred = non_max_suppression(pred, self.opt.conf_thres, self.opt.iou_thres, classes=self.opt.classes,
                        agnostic=self.opt.agnostic_nms)
                        info_show = ""
                        # Process detections
                        
                        for i, det in enumerate(pred):
                            if det is not None and len(det):
                                # Rescale boxes from img_size to im0 size
                                det[:, :4] = scale_coords(img.shape[2:], det[:, :4], showimg.shape).round()
                                for *xyxy, conf, cls in reversed(det):
                                        label = '%s %.2f' % (self.names[int(cls)], conf)
                                        name_list.append(self.names[int(cls)])
                                        single_info = plot_one_box2(xyxy, showimg, label=label, color=self.colors[int(cls)], line_thickness=2)
                                        # print(single_info)
                                        info_show = info_show + single_info + "\n"
                return  info_show    
  • 具体的都有注释

模型的初始化和权重参数的加载

  • 权重加载
def open_model(self):
                self.openfile_name_model, _ = QFileDialog.getOpenFileName(self, '选择权重文件', directory='./yolov5\yolo\YoloV5_PyQt5-main\weights')
                print(self.openfile_name_model)
                if not self.openfile_name_model:
                #    QtWidgets.QMessageBox.warning(self, u"Warning" u'未选择权重文件,请重试', buttons=QtWidgets.QMessageBox.Ok)
                   self.log("warining 未选择权重文件,请重试")
                else :
                   print(self.openfile_name_model)
                   self.log("权重文件路径为:%s"%self.openfile_name_model)
                pass
  • 模型加载
def model_init(self):
                # 模型相关参数配置
                parser = argparse.ArgumentParser()
                parser.add_argument('--weights', nargs='+', type=str, default='weights/yolov5s.pt', help='model.pt path(s)')
                parser.add_argument('--source', type=str, default='data/images', help='source')  # file/folder, 0 for webcam
                parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
                parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold')
                parser.add_argument('--iou-thres', type=float, default=0.25, help='IOU threshold for NMS')
                parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
                parser.add_argument('--view-img', action='store_true', help='display results')
                parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
                parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
                parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
                parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
                parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
                parser.add_argument('--augment', action='store_true', help='augmented inference')
                parser.add_argument('--update', action='store_true', help='update all models')
                parser.add_argument('--project', default='runs/detect', help='save results to project/name')
                parser.add_argument('--name', default='exp', help='save results to project/name')
                parser.add_argument('--save', default=False, help='save video to local')
                parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
                self.opt = parser.parse_args()
                print(self.opt)
                # 使用模型的默认参数
                source, self.weights, imgsz = self.opt.source, self.opt.weights, self.opt.img_size
                
                # 若有配置自定义权重,
                if hasattr(self, "openfile_name_model") and self.openfile_name_model.endswith('.pt'):
                     self.weights = self.openfile_name_model
                     self.log('记载自定义权重成功')
                else :
                     self.log('warning:权重文件有误,请重新加载')
                
                # 选择cpu 和gpu
                self.device = select_device(self.opt.device)
                self.half = self.device.type != 'cpu'
                cudnn.benchmark = True
                # Load model
                self.model = attempt_load(self.weights, map_location=self.device)
                stride = int(self.model.stride.max())  # model stride
                self.imgsz = check_img_size(imgsz, s=stride)  # check img_size
                if self.half:
                    self.model.half()  # to FP16
                # Get names and colors
                self.names = self.model.module.names if hasattr(self.model, 'module') else self.model.names
                self.colors = [[random.randint(0, 255) for _ in range(3)] for _ in self.names]
                QtWidgets.QMessageBox.information(self, u"Notice", u"模型加载完成", buttons=QtWidgets.QMessageBox.Ok,
                                      defaultButton=QtWidgets.QMessageBox.Ok)
                self.log('模型加载完成')

设置图片识别

def button_image_open(self):
            print('button_image_open')
            name_list = []
            try:
                img_name, _ = QtWidgets.QFileDialog.getOpenFileName(self, "选择文件")
            except OSError as reason:
                print('文件出错啦')
                QtWidgets.QMessageBox.warning(self, 'Warning', '文件出错', buttons=QtWidgets.QMessageBox.Ok)
            else:
                if not img_name:
                   QtWidgets.QMessageBox.warning(self,"Warning", '文件出错', buttons=QtWidgets.QMessageBox.Ok)
                   self.log('文件出错')
                else:
                    img = cv.imread(img_name)
                    info_show = self.detect(name_list, img)
                    date = time.strftime('%Y-%m-%d-%H-%M-%S', time.localtime(time.time())) # 当前时间
                    file_extaction = img_name.split('.')[-1]
                    new_fileName = date + '.' + file_extaction
                    file_path = self.output_folder + 'img_output/' + new_fileName
                    cv.imwrite(file_path, img)
                    self.show_img(info_show, img)
                    
                #     self.log(info_show) #检测信息
                    
                #     self.result = cv.cvtColor(img, cv.COLOR_BGR2BGRA)
                    
                #     self.result =  letterbox(self.result, new_shape=self.opt.img_size)[0] #cv.resize(self.result, (640, 480), interpolation=cv.INTER_AREA)
                #     self.QtImg = QtGui.QImage(self.result.data, self.result.shape[1], self.result.shape[0], QtGui.QImage.Format_RGB32)
                #     print(type(self.ui.show))
                #     self.ui.show.setPixmap(QtGui.QPixmap.fromImage(self.QtImg))
                #     self.ui.show.setScaledContents(True) # 设置图像自适应界面大小

视频和摄像头

def button_video_open(self):
                video_path, _ = QtWidgets.QFileDialog.getOpenFileName(self, '选择检测视频', filter="*.mp4;;*.avi;;All Files(*)")
                flag = self.cap.open(video_path)
                if not flag:
                        QtWidgets.QMessageBox.warning(self,"Warning", '打开视频失败', buttons=QtWidgets.QMessageBox.Ok)
                else: 
                        self.timer_video.start(1000/self.cap.get(cv.CAP_PROP_FPS)) # 以30ms为间隔,启动或重启定时器
                        if self.opt.save:
                                fps, w, h, path = self.set_video_name_and_path()
                                self.vid_writer = cv.VideoWriter(path, cv.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
def button_camera_open(self):
                camera_num = 0
                self.cap = cv.VideoCapture(camera_num)
                if not self.cap.isOpened():
                        QtWidgets.QMessageBox.warning(self, u"Warning", u'摄像头打开失败', buttons=QtWidgets.QMessageBox.Ok)
                else:
                        self.timer_video.start(1000/60)
                        if self.opt.save:
                                fps, w, h, path = self.set_video_name_and_path()
                                self.vid_writer = cv.VideoWriter(path, cv.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
                        

知识点

  • 图片的显示用qlabel就可以了
def show_img(self, info_show, img):
                self.log(info_show)
                show = cv.resize(img, (640, 480)) # 直接将原始img上的检测结果进行显示
                self.result = cv.cvtColor(show, cv.COLOR_BGR2RGB)
                self.result =  letterbox(self.result, new_shape=self.opt.img_size)[0]
                showImage = QtGui.QImage(self.result.data, self.result.shape[1], self.result.shape[0],
                                     QtGui.QImage.Format_RGB888)
                self.ui.show.setPixmap(QtGui.QPixmap.fromImage(showImage))
                self.ui.show.setScaledContents(True)  # 设置图像自适应界面大小

完整的代码

import argparse
import random
import sys
import time

import torch
from PyQt5.QtWidgets import *
from PyQt5 import QtCore, QtGui, QtWidgets
from PyQt5.QtWidgets import QApplication,QMainWindow
import name
from functools import partial
from utils.torch_utils import select_device
import torch.backends.cudnn as cudnn
import cv2 as cv
from utils.datasets import letterbox
from utils.plots import plot_one_box2
import numpy as np
from models.experimental import attempt_load
from utils.general import check_img_size, non_max_suppression, scale_coords

# pyuic5 -o name.py test.ui
class UI_Logic_Window(QtWidgets.QMainWindow):
        def __init__(self, parent = None):
                super(UI_Logic_Window, self).__init__(parent)
                self.timer_video = QtCore.QTimer() # 创建定时器
                #创建一个窗口
                self.w = QMainWindow()
                self.ui = name.Ui_MainWindow()
                self.ui.setupUi(self)
                self.init_slots()
                self.output_folder = 'output/'
                self.cap = cv.VideoCapture()
                # 日志
                self.logging = ''
       # 控件绑定相关操作
        def init_slots(self):
                self.ui.imgScan.clicked.connect(self.button_image_open)
                self.ui.videoScan.clicked.connect(self.button_video_open)
                self.ui.capScan.clicked.connect(self.button_camera_open)
                self.ui.loadWeight.clicked.connect(self.open_model)
                self.ui.initModel.clicked.connect(self.model_init)
                self.ui.start.clicked.connect(self.toggleState)
                self.ui.end.clicked.connect(self.endVideo)
                        # self.ui.pushButton_stop.clicked.connect(self.button_video_stop)
                        # self.ui.pushButton_finish.clicked.connect(self.finish_detect)
                self.timer_video.timeout.connect(self.show_video_frame) # 定时器超时,将槽绑定至show_video_frame
        def button_image_open(self):
            print('button_image_open')
            name_list = []
            try:
                img_name, _ = QtWidgets.QFileDialog.getOpenFileName(self, "选择文件")
            except OSError as reason:
                print('文件出错啦')
                QtWidgets.QMessageBox.warning(self, 'Warning', '文件出错', buttons=QtWidgets.QMessageBox.Ok)
            else:
                if not img_name:
                   QtWidgets.QMessageBox.warning(self,"Warning", '文件出错', buttons=QtWidgets.QMessageBox.Ok)
                   self.log('文件出错')
                else:
                    img = cv.imread(img_name)
                    info_show = self.detect(name_list, img)
                    date = time.strftime('%Y-%m-%d-%H-%M-%S', time.localtime(time.time())) # 当前时间
                    file_extaction = img_name.split('.')[-1]
                    new_fileName = date + '.' + file_extaction
                    file_path = self.output_folder + 'img_output/' + new_fileName
                    cv.imwrite(file_path, img)
                    self.show_img(info_show, img)
                    
                #     self.log(info_show) #检测信息
                    
                #     self.result = cv.cvtColor(img, cv.COLOR_BGR2BGRA)
                    
                #     self.result =  letterbox(self.result, new_shape=self.opt.img_size)[0] #cv.resize(self.result, (640, 480), interpolation=cv.INTER_AREA)
                #     self.QtImg = QtGui.QImage(self.result.data, self.result.shape[1], self.result.shape[0], QtGui.QImage.Format_RGB32)
                #     print(type(self.ui.show))
                #     self.ui.show.setPixmap(QtGui.QPixmap.fromImage(self.QtImg))
                #     self.ui.show.setScaledContents(True) # 设置图像自适应界面大小
        def show_img(self, info_show, img):
                self.log(info_show)
                show = cv.resize(img, (640, 480)) # 直接将原始img上的检测结果进行显示
                self.result = cv.cvtColor(show, cv.COLOR_BGR2RGB)
                self.result =  letterbox(self.result, new_shape=self.opt.img_size)[0]
                showImage = QtGui.QImage(self.result.data, self.result.shape[1], self.result.shape[0],
                                     QtGui.QImage.Format_RGB888)
                self.ui.show.setPixmap(QtGui.QPixmap.fromImage(showImage))
                self.ui.show.setScaledContents(True)  # 设置图像自适应界面大小
        def toggleState(self):
                print('toggle')
                state = self.timer_video.signalsBlocked()
                self.timer_video.blockSignals(not state)
                text = '继续' if not state else '暂停'
                self.ui.start.setText(text)
        def endVideo(self):
                print('end')
                self.timer_video.blockSignals(True)
                self.releaseRes()
        def detect(self, name_list, img):
                '''
                :param name_list: 文件名列表
                :param img: 待检测图片
                :return: info_show:检测输出的文字信息
                '''
                showimg = img
                # 不使用图计算
                with torch.no_grad():
                        # 填充为标准的大小,letterbox 不同于resize, 使用的是边缘填充
                        img = letterbox(img, new_shape=self.opt.img_size)[0]
                        # Convert
                        # 转换成Rgb模式
                        img = img[:, :, ::-1].transpose(2, 0, 1)  # BGR to RGB, to 3x416x416
                        # 转换成连续的内存格式,加快计算速度
                        img = np.ascontiguousarray(img)
                        # 图和ndarray的转换,并制定cpu或gpu
                        img = torch.from_numpy(img).to(self.device)
                        # 设置精度
                        img = img.half() if self.half else img.float()  # uint8 to fp16/32
                        # 归一化
                        img /= 255.0  # 0 - 255 to 0.0 - 1.0
                        # 统一格式
                        if img.ndimension() == 3:
                                # 增加一个维度
                                img = img.unsqueeze(0)
                        # Inference
                        # 使用模型预测
                        pred = self.model(img, augment=self.opt.augment)[0]
                        # Apply NMS
                        # 非极大值抑制
                        pred = non_max_suppression(pred, self.opt.conf_thres, self.opt.iou_thres, classes=self.opt.classes,
                        agnostic=self.opt.agnostic_nms)
                        info_show = ""
                        # Process detections
                        
                        for i, det in enumerate(pred):
                            if det is not None and len(det):
                                # Rescale boxes from img_size to im0 size
                                det[:, :4] = scale_coords(img.shape[2:], det[:, :4], showimg.shape).round()
                                for *xyxy, conf, cls in reversed(det):
                                        label = '%s %.2f' % (self.names[int(cls)], conf)
                                        name_list.append(self.names[int(cls)])
                                        single_info = plot_one_box2(xyxy, showimg, label=label, color=self.colors[int(cls)], line_thickness=2)
                                        # print(single_info)
                                        info_show = info_show + single_info + "\n"
                return  info_show           
        def button_video_open(self):
                video_path, _ = QtWidgets.QFileDialog.getOpenFileName(self, '选择检测视频', filter="*.mp4;;*.avi;;All Files(*)")
                flag = self.cap.open(video_path)
                if not flag:
                        QtWidgets.QMessageBox.warning(self,"Warning", '打开视频失败', buttons=QtWidgets.QMessageBox.Ok)
                else: 
                        self.timer_video.start(1000/self.cap.get(cv.CAP_PROP_FPS)) # 以30ms为间隔,启动或重启定时器
                        if self.opt.save:
                                fps, w, h, path = self.set_video_name_and_path()
                                self.vid_writer = cv.VideoWriter(path, cv.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
        def set_video_name_and_path(self):
                # 获取当前系统时间,作为img和video的文件名
                now = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime(time.time()))
                # if vid_cap:  # video
                fps = self.cap.get(cv.CAP_PROP_FPS)
                w = int(self.cap.get(cv.CAP_PROP_FRAME_WIDTH))
                h = int(self.cap.get(cv.CAP_PROP_FRAME_HEIGHT))
                # 视频检测结果存储位置
                save_path = self.output_folder + 'video/' + now + '.mp4'
                return fps, w, h, save_path

        def button_camera_open(self):
                camera_num = 0
                self.cap = cv.VideoCapture(camera_num)
                if not self.cap.isOpened():
                        QtWidgets.QMessageBox.warning(self, u"Warning", u'摄像头打开失败', buttons=QtWidgets.QMessageBox.Ok)
                else:
                        self.timer_video.start(1000/60)
                        if self.opt.save:
                                fps, w, h, path = self.set_video_name_and_path()
                                self.vid_writer = cv.VideoWriter(path, cv.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
                        
        def open_model(self):
                self.openfile_name_model, _ = QFileDialog.getOpenFileName(self, '选择权重文件', directory='./yolov5\yolo\YoloV5_PyQt5-main\weights')
                print(self.openfile_name_model)
                if not self.openfile_name_model:
                #    QtWidgets.QMessageBox.warning(self, u"Warning" u'未选择权重文件,请重试', buttons=QtWidgets.QMessageBox.Ok)
                   self.log("warining 未选择权重文件,请重试")
                else :
                   print(self.openfile_name_model)
                   self.log("权重文件路径为:%s"%self.openfile_name_model)
                pass
        def model_init(self):
                # 模型相关参数配置
                parser = argparse.ArgumentParser()
                parser.add_argument('--weights', nargs='+', type=str, default='weights/yolov5s.pt', help='model.pt path(s)')
                parser.add_argument('--source', type=str, default='data/images', help='source')  # file/folder, 0 for webcam
                parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
                parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold')
                parser.add_argument('--iou-thres', type=float, default=0.25, help='IOU threshold for NMS')
                parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
                parser.add_argument('--view-img', action='store_true', help='display results')
                parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
                parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
                parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
                parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
                parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
                parser.add_argument('--augment', action='store_true', help='augmented inference')
                parser.add_argument('--update', action='store_true', help='update all models')
                parser.add_argument('--project', default='runs/detect', help='save results to project/name')
                parser.add_argument('--name', default='exp', help='save results to project/name')
                parser.add_argument('--save', default=False, help='save video to local')
                parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
                self.opt = parser.parse_args()
                print(self.opt)
                # 使用模型的默认参数
                source, self.weights, imgsz = self.opt.source, self.opt.weights, self.opt.img_size
                
                # 若有配置自定义权重,
                if hasattr(self, "openfile_name_model") and self.openfile_name_model.endswith('.pt'):
                     self.weights = self.openfile_name_model
                     self.log('记载自定义权重成功')
                else :
                     self.log('warning:权重文件有误,请重新加载')
                
                # 选择cpu 和gpu
                self.device = select_device(self.opt.device)
                self.half = self.device.type != 'cpu'
                cudnn.benchmark = True
                # Load model
                self.model = attempt_load(self.weights, map_location=self.device)
                stride = int(self.model.stride.max())  # model stride
                self.imgsz = check_img_size(imgsz, s=stride)  # check img_size
                if self.half:
                    self.model.half()  # to FP16
                # Get names and colors
                self.names = self.model.module.names if hasattr(self.model, 'module') else self.model.names
                self.colors = [[random.randint(0, 255) for _ in range(3)] for _ in self.names]
                QtWidgets.QMessageBox.information(self, u"Notice", u"模型加载完成", buttons=QtWidgets.QMessageBox.Ok,
                                      defaultButton=QtWidgets.QMessageBox.Ok)
                self.log('模型加载完成')
        def show_video_frame(self):
                name_list = []
                flag, img = self.cap.read()
                if img is None:
                       
                       self.releaseRes() 
                else:
                        info_show = self.detect(name_list, img)
                        if self.opt.save:
                                self.vid_writer.write(img) # 检测结果写入视频
                        self.show_img(info_show, img)
        def releaseRes(self):
                        print('读取结束')
                        self.log('检测结束')
                        self.timer_video.stop()
                        self.cap.release() # 释放video_capture资源
                        self.ui.show.clear()
                        if self.opt.save:
                                self.vid_writer.release()               
        def log(self, msg):
                self.logging += '%s\n'%msg
                self.ui.log.setText(self.logging)
if __name__=='__main__':
    # 创建QApplication实例
    app=QApplication(sys.argv)#获取命令行参数
    current_ui = UI_Logic_Window()
    current_ui.show()
    sys.exit(app.exec_())

演示效果

新鲜出炉的 yoloV5可视化实战项目(1)_第5张图片
B站效果展示

你可能感兴趣的:(python,深度学习,opencv,深度学习,yolo)