python深度学习之用lightgbm算法实现鸢尾花种类的分类任务实战源码

本代码以sklearn包中自带的鸢尾花数据集为例,用lightgbm算法实现鸢尾花种类的分类任务。
参考来源:
https://lightgbm.readthedocs.io/en/latest/Python-Intro.html

#!/usr/bin/env python 
# -*- coding:utf-8 -*-
# Author's_name_is_NIKOLA_SS
#pip install  lightgbm -i https://pypi.mirrors.ustc.edu.cn/simple/


import json
import lightgbm as lgb
import pandas as pd
from sklearn.metrics import mean_squared_error
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.datasets import  make_classification

iris = load_iris()  # 载入鸢尾花数据集
data = iris.data
target = iris.target
X_train, X_test, y_train, y_test = train_test_split( data, target, test_size=0.2 )

# 加载你的数据
# print('Load data...')
# df_train = pd.read_csv('../regression/regression.train', header=None, sep='\t')
# df_test = pd.read_csv('../regression/regression.test', header=None, sep='\t')
#
# y_train = df_train[0].values
# y_test = df_test[0].values
# X_train = df_train.drop(0, axis=1).values
# X_test = df_test.drop(0, axis=1).values

# 创建成lgb特征的数据集格式
lgb_train = lgb.Dataset( X_train, y_train )  # 将数据保存到LightGBM二进制文件将使加载更快
lgb_eval = lgb.Dataset( X_test, y_test, reference=lgb_train )  # 创建验证数据

# 将参数写成字典下形式
params = {
    'task': 'train',
    'boosting_type': 'gbdt',  # 设置提升类型
    'objective': 'regression',  # 目标函数
    'metric': {'l2', 'auc'},  # 评估函数
    'num_leaves': 31,  # 叶子节点数
    'learning_rate': 0.05,  # 学习速率
    'feature_fraction': 0.9,  # 建树的特征选择比例
    'bagging_fraction': 0.8,  # 建树的样本采样比例
    'bagging_freq': 5,  # k 意味着每 k 次迭代执行bagging
    'verbose': 1  # <0 显示致命的, =0 显示错误 (警告), >0 显示信息
}

print( 'Start training...' )
# 训练 cv and train
gbm = lgb.train( params, lgb_train, num_boost_round=20, valid_sets=lgb_eval, early_stopping_rounds=5 )  # 训练数据需要参数列表和数据集

print( 'Save model...' )

gbm.save_model( 'model.txt' )  # 训练后保存模型到文件

print( 'Start predicting...' )
# 预测数据集
y_pred = gbm.predict( X_test, num_iteration=gbm.best_iteration )  # 如果在训练期间启用了早期停止,可以通过best_iteration方式从最佳迭代中获得预测
# 评估模型
print( 'The rmse of prediction is:', mean_squared_error( y_test, y_pred ) ** 0.5 )  # 计算真实值和预测值之间的均方根误差

运行之后的结果输出如下:

Start training...
[LightGBM] [Warning] Auto-choosing row-wise multi-threading, the overhead of testing was 0.000064 seconds.
You can set `force_row_wise=true` to remove the overhead.
And if memory is not enough, you can set `force_col_wise=true`.
[LightGBM] [Info] Total Bins 90
[LightGBM] [Info] Number of data points in the train set: 120, number of used features: 4
[LightGBM] [Info] Start training from score 1.008333
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[1]	valid_0's auc: 1	valid_0's l2: 0.702787
Training until validation scores don't improve for 5 rounds
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[2]	valid_0's auc: 1	valid_0's l2: 0.64447
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[3]	valid_0's auc: 1	valid_0's l2: 0.591793
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[4]	valid_0's auc: 1	valid_0's l2: 0.542737
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[5]	valid_0's auc: 1	valid_0's l2: 0.499044
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[6]	valid_0's auc: 1	valid_0's l2: 0.458074
Early stopping, best iteration is:
[1]	valid_0's auc: 1	valid_0's l2: 0.702787
Save model...
Start predicting...
The rmse of prediction is: 0.8383238691881394

Process finished with exit code 0

参考来源于网络。

你可能感兴趣的:(python2021,python,机器学习,深度学习,人工智能,数据挖掘)