仔细寻找,会发现:在下面的8x8的方阵中,隐藏着字母序列:“LANQIAO”。
SLANQIAO
ZOEXCCGB
MOAYWKHI
BCCIPLJQ
SLANQIAO
RSFWFNYA
XIFZVWAL
COAIQNAL
我们约定: 序列可以水平,垂直,或者是斜向;并且走向不限(实际上就是有一共8种方向)。
上面一共有4个满足要求的串。
总共存在8个方向,但是其中两两是相反的,所以我们有四种模式的搜索:
#include
using namespace std;
int spFind(char **arr, int st_row, int st_col, int max_row, int max_col){
// one row-find
int cnt = 0, pos_idx=0, neg_idx=6;
char judge[] = {'L', 'A', 'N', 'Q', 'I', 'A', 'O'};
if(st_col + 7 <= max_col){
for(int i=st_col; i < max_col && i < st_col+7; i++){
if(arr[st_row][i] == judge[pos_idx]) pos_idx++;
if(pos_idx == 7){
cnt++;
pos_idx=0;
}
if(arr[st_row][i] == judge[neg_idx]) neg_idx--;
if(neg_idx == -1){
cnt++;
neg_idx = 6;
}
}
}
pos_idx=0, neg_idx=6;
// one col-find
if(st_row + 7 <= max_row){
for(int i=st_row; i < max_row && i < st_row+7; i++){
if(arr[i][st_col] == judge[pos_idx]) pos_idx++;
if(pos_idx == 7){
cnt++;
pos_idx = 0;
}
if(arr[i][st_col] == judge[neg_idx]) neg_idx--;
if(neg_idx == -1){
cnt++;
neg_idx = 6;
}
}
}
pos_idx=0, neg_idx=6;
// right-down
if(st_row + 7 <= max_row && st_col + 7 <= max_col){
for(int i=st_row, j=st_col; \
i < max_row && j < max_col && i < st_row + 7 && j < st_col + 7;\
i++, j++){
if(arr[i][j] == judge[pos_idx]) pos_idx++;
if(pos_idx == 7){
cnt++;
pos_idx=0;
}
if(arr[i][j] == judge[neg_idx]) neg_idx--;
if(neg_idx == -1){
cnt++;
neg_idx = 6;
}
}
}
pos_idx=0, neg_idx=6;
// right-up
if(st_col + 7 <= max_col && st_row - 7 >= 0){
for(int i=st_row, j=st_col; \
i > 0 && j < max_col && i > st_row - 7 && j < st_col + 7;\
i--, j++){
if(arr[i][j] == judge[pos_idx]) pos_idx++;
if(pos_idx == 7){
cnt++;
pos_idx=0;
}
if(arr[i][j] == judge[neg_idx]) neg_idx--;
if(neg_idx == -1){
cnt++;
neg_idx = 6;
}
}
}
return cnt;
}
int main(){
int n, m;
cin >> n;
m = n;
// 动态数组定义
char **str_matrix = new char*[n];
for(int i=0; i < n; i++) str_matrix[i] = new char[m];
int out = 0;
for(int i=0; i < n; i++){
for(int j=0; j < n; j++){
cin >> str_matrix[i][j];
}
}
for(int i=0; i < n; i++){
for(int j=0; j < n; j++){
out += spFind(str_matrix, i, j, n, n);
}
}
cout << out << endl;
// 动态数组释放
for(int i=0; i < n; i++) delete [] str_matrix[i];
delete [] str_matrix;
return 0;
}
def sp_find(arr, st_row, st_col, max_row, max_col):
# one row-find
cnt = 0
pos_idx=0
neg_idx=6
judge = ['L', 'A', 'N', 'Q', 'I', 'A', 'O']
if(st_col + 7 <= max_col):
for i in range(st_col, st_col+7):
if(arr[st_row][i] == judge[pos_idx]):
pos_idx += 1
if(pos_idx == 7):
cnt += 1
pos_idx=0
if(arr[st_row][i] == judge[neg_idx]):
neg_idx-=1
if(neg_idx == -1):
cnt += 1;
neg_idx = 6;
pos_idx=0
neg_idx=6
# one col-find
if(st_row + 7 <= max_row):
for i in range(st_row, st_row + 7):
if(arr[i][st_col] == judge[pos_idx]):
pos_idx += 1
if(pos_idx == 7):
cnt += 1
pos_idx = 0
if(arr[i][st_col] == judge[neg_idx]):
neg_idx-=1
if(neg_idx == -1):
cnt += 1;
neg_idx = 6;
pos_idx=0
neg_idx=6
# right-down
if(st_row + 7 <= max_row) and (st_col + 7 <= max_col):
for i, j in zip(range(st_row, st_row+7), range(st_col, st_col+7)):
if(arr[i][j] == judge[pos_idx]):
pos_idx += 1
if(pos_idx == 7):
cnt += 1
pos_idx = 0
if(arr[i][j] == judge[neg_idx]):
neg_idx-=1
if(neg_idx == -1):
cnt += 1;
neg_idx = 6;
pos_idx=0
neg_idx=6
# right-up
if(st_row - 7 >= 0) and (st_col + 7 <= max_col):
for i, j in zip(range(st_row, st_row-7, -1), range(st_col, st_col+7)):
if(arr[i][j] == judge[pos_idx]):
pos_idx += 1
if(pos_idx == 7):
cnt += 1
pos_idx = 0
if(arr[i][j] == judge[neg_idx]):
neg_idx-=1
if(neg_idx == -1):
cnt += 1
neg_idx = 6
return cnt
if __name__ == '__main__':
str_matrix = []
n = int(input('输入矩阵的大小(如 2 3 4)'))
for i in range(n):
a = input()
str_matrix.append([i for i in a])
out = 0
for i in range(n):
for j in range(n):
out += sp_find(str_matrix, i, j, n, n);
print(out)