时间到了2019年,数据库也发展到了一个新的拐点,有三个明显的趋势:
阿里云HBase经过公共云两年(单独的HBase在阿里内部已经发展快9年)的发展,融合开源Apache HBase、Apache Phoenix、Apache Spark、Apache Solr等开源项目,再加上一系列自研特性,满足 【一体化数据处理平台,提供一站式能力】 , 基本架构如下:
我们是站在Apache巨人的肩膀上,自研了 ApsaraDB Filesystem、HBase冷热分离、SearchIndex、SparkOnX、BDS等模块,优化了HBase、Phoenix、Spark等内核一些patch,并反馈到社区,维护打造了多模服务、数据工作台等一些列的平台能力。自研部分是我们平台核心的核心竞争力,每一层每一个组件都是我们精心打造,满足客户数据驱动业务的实际需求。为了降低客户的准入门槛,我们在Github上提供了Demo支持:aliyun-apsaradb-hbase-demo,欢迎大家关注,并贡献代码。接下来笔者会介绍各层,力求简单通俗,文中有大量的链接以衍生阅读。
作为一个存储计算平台,价值在满足不同的业务需求。见下图:
此图描述了数据的来源、通道到沉淀到云HBase平台,再通过平台提供的Spark引擎去挖掘价值反馈给业务系统。此类似一个循环系统,在阿里内部形象称为【业务数据化,再数据业务化】。
结合架构图及业务图,此平台融合了 存储(包括实时存储及离线存储)、计算、检索等技术。整个系统都打造在ApsaraDB Filesystem统一文件层之上,把检索通过Phoenix的SearchIndex包装以降低易用性,打造领域引擎满足领域的需求,内置BDS(数据通道)实时归档数据到列存,再通过Spark引擎挖掘价值。
详细参考:【选择阿里云数据库HBase版十大理由】
ApsaraDB Filesystem(简称ADB FS)以Hadoop FileSystem API为基础构建了云HBase生态文件层底座。面向HBase生态提供了无感知的混合存储能力,极大简化了HBase生态接入云端多存储形态的复杂环境。支持OSS、阿里云HDFS、基于云盘或者本地盘构建的HDFS以及基于共享云盘构建的系统。每种分布式文件系统所用的硬件不同、成本不同、延迟不同、吞吐量不同(这里不展开)。我们可以不断扩展,只要添加一个实现xxxFileSystem即可。基于OSS直接实现的FS是无法具备原子性的元数据管理能力的,实现方案是在HDFS的namenode存元数据,实际的存储存放在OSS之上。对Rename操作只需要移动元数据,所以非常轻量。
HBase是基于Bigtable在hadoop社区的开源实现,提供了如:稀疏宽表、TTL、动态列等特性。HBase在阿里已经发展9年,已经有数位PMC及Committer,可以说在国内阿里在HBase的影响力还是数一数二的。社区也有不少的Patch也是阿里贡献。在18年,云HBase首家商业化了HBase2.0,并贡献了数十个BugFix给社区。有不少客户单独使用HBase API满足业务需求,也有不少客户使用Phoenix NewSQL层,NewSQL层提升易用性及提供了很多好用的功能。在HBase层面,除了修复社区的Bug以外,也做了几个较大的特性。
在对比关系型数据方面,HBase也有天然的优势,参考:对比MySQL,一文看透HBase的能力及使用场景
HBase底层基于LSM,擅长前缀匹配和范围查找,数据模型上属于行存,大范围扫描数据对系统影响很大。我们知道,用户的需求往往是各式各样,不断变化的。对于要求高TPS,高并发,查询业务比较固定且简单的场景,HBase可以很好满足。更复杂一些,当用户对同一张表的查询条件组合有固定多个时,可以通过二级索引的方式来解决,但是二级索引有写放大问题,索引数量不能太多,一般建议不超过10个。当面对更复杂的查询模式,比如自由条件组合,模糊查询,全文查询等,用当前的索引技术是无法满足的,需要寻求新的解决方案。我们容易想到,搜索引擎,比如Lucene、Solr以及ElasticSearch,是专门面向复杂查询场景的。为了应对各种复杂的查询需求,搜索引擎运用到了大量跟LSM Tree十分不同的索引技术,比如倒排、分词、BKD Tree做数值类型索引、roaring bitmap实现联合索引、DocValues增强聚合和排序等。使用搜索引擎的技术来增强HBase的查询能力是一个十分值得深入探索的技术方向。
当前用户要想实现,复杂查询,只能重新购买新的搜索集群,通过导数据的方式将数据导入到新的搜索服务中。这种方式存在很多这样那样的问题:维护成本比较高,需要购买在线数据库,分析数据库和数据传输服务;学习门槛高,需要同时熟悉至少上诉三种服务;无法保证实时性,在线库入库和检索库入库效率不匹配;数据冗余存储,在线库索引数据和结果数据设计的所有数据都需要导入;数据一致性难保证,数据乱序问题十分常见,特别是对于分布式在线库更是如此。云HBase引入Solr,并在产品和内核上做了一系列工作,将其打造成统一的产品体验,一揽子解决了前述所有问题。用户在控制台上一键可以开通检索服务,参考文章:云HBase发布全文索引服务,轻松应对复杂查询。
检索服务的架构如上图所示,最底层是分布式文件系统的统一抽象,HBase的数据和Solr中的数据都会存储在分布式文件系统中。最上层是分布式协调服务Zookeeper,HBase、Indexer、Solr都是基于其实现分布式功能。Indexer实现了存量HBase数据的批量导入功能,有针对性地实现了数据批量导入的分布式作业机制。Indexer服务也实现了实时数据的异步同步功能,利用HBase的后台Replication机制,Indexer实现了Fake HBase功能,接收到HBase的数据后,将其转换为Solr的document,并写入solr。针对HBase写入速度比Solr快的问题,我们设计并实现了反压机制,可以将Solr中数据的延迟控制在用户设定的时间范围内,该机制同时也避免了HLog消费速度过慢的堆积问题。实时同步和批量导入可以同时运行,我们通过保序的时间戳保证了数据的最终一致性。为了提高产品的易用性,我们还基于Phoenix 实现了检索服务的SQL封装,并在存储查询等方面做了一系列优化升级,该部分在下个章节将会介绍。
Phoenix是HBase之上的SQL层,Phoenix让HBase平台从NoSQL直接进化到了NewSQL。在HBase的基础之上,再支持了Schema、Secondary Indexes、View 、Bulk Loading(离线大规模load数据)、Atomic upsert、Salted Tables、Dynamic Columns、Skip Scan等特性。目前云上最大客户有200T左右,且50%+的客户都开通了Phoenix SQL服务。我们修复了社区数十个Bug及提了不少新特性,团队也拥有1位Committer及数位contributor。在18年我们在充分测试的基础上,先于社区正式商业化了Phoenix5.0,并支持了QueryServer,支持轻量的JDBC访问。同时,社区的5.0.1也将由我们推动发布。
Phoenix本身我们做了一系列稳定性,性能等方面的优化升级,主要有:客户端优化MetaCache机制,大数据量简单查询性能提升一个数量级;索引表回查主表,使用lookupjoin的方式优化,性能提升5到7倍;轻客户端优化batch commit,性能提升2到3倍;解决Phoenix时区问题,提高易用性,降低数据一致性问题概率;禁用DESC,扫全表等有风险功能;实现大批量数据导入的Bulkload功能;等等。这些稳定性和性能方面的提升,在用户侧得到了很好的反馈。
Phoenix目前基本的架构如图所示,我们让Phoenix支持了HBase和Solr双引擎,用户可以使用SQL实现对HBase和Solr数据的管理和查询,大大提高了系统的易用性。Solr和HBase之间的同步机制可以参考上节。在支持复杂查询方面,我们设计并实现了一种新的索引:Search Index,使用方式跟Phoenix的Global Index类似,主要区别在于Search Index的索引数据存储在Solr里面,而Global Index的索引数据是一张单独的HBase表。直接通过SQL管理Search Index的生命周期、数据同步和状态,自动映射数据字段类型,并通过SQL支持复杂查询,这极大降低了用户的使用门槛。Search Index可以统一根据HBase和Solr的特性做优化,由于原表在HBase中可以通过RowKey高效查询,Solr中只需要存储作为查询条件的字段的索引数据,查询字段的原数据不需要存储在Solr中,表中的非查询字段则完全不需要存储到Solr中。相对于用户单独购买检索产品,并同步数据的方案,Search Index可以大大降低存储空间。同时,根据索引特性,Phoenix在做执行计划优化时,可以动态选择最优的索引方案。
我们还打造了一个系列的文章,这些文章是很多国内用户熟悉和学习Phoenix的入门资料,在社区里面也收获了较高的影响力,参考 Phoenix入门到精通
数据类型有表格、文档、宽表、图、时序、时空等不同的类型。云HBase之上打造了 HGraphDB分布式图层、OpenTSDB分布式时序层、Ganos分布式空间层,分别满足3大子场景的诉求。每个都是分布式的组件,具备PB级别的存储、高并发读写及无限扩展的能力。
行列混合HTAP一直是各大数据库梦寐追求大统一的技术,类似于M理论想统一量子力学与万有引力。目前看起来一份存储难以满足各种诉求,通用的做法是行存与列存的数据分开存,实现手段一种是通过同步的方案把行存的数据再转存一份列存,另一种是通过raft等变种协议的手段实现行列副本同时存在。
HBase擅长在线查询场景,底层的HFile格式实际还是行存,直接Spark分析HBase表在大范围查询的情况下性能一般(Spark On HBase也有很多优化点)。在这样的背景下我们构建了HBase的实时HLog增量同步归档到列存的链路,来有效满足用户对于HBase数据分析的需求。列存的压缩比比行存高,增加部分存储成本,有效的增强分析能力,用户是能够接受的。HBase搭配列存可以有效的驱动用户业务的发展,列存分析后的结果数据回流到HBase支持业务,让用户业务在HBase平台中快速迭代。在列存之中,也有类似LSM的 Delta+全量的,比如Kudu以及 Delta Lake。云HBase参考了Delta Lake及Parquet技术,提供更加高效的一体化分析。
用户可以根据自身的业务需求进行转存,对于对实时性要求比较高的用户,可以选择实时同步的方式,BDS服务会实时解析HLog并转存到Delta,用户可以通过Spark对Delta直接进行查询;而对于离线场景的转存,用户可以在控制台上根据自身业务需要进行配置,可以自定义在业务低峰期进行转存,也可以选择是否进行增量和全量合并,后台调度系统会自动触发转存逻辑。
在云HBase平台里面沉淀了不少数据,或者在进入云HBase平台的数据需要流ETL,参考业界的通用做法,目前最流行的计算引擎是Spark,我们引入Apache Spark来满足平台的数据处理需求。Spark采取的是DAG的执行引擎,支持SQL及编程语言,比传统的MR快100倍,另外支持流、批、机器学习、支持SQL&Python&Scala等多种编程语言。云HBase平台提供的能力有流式的ETL、Spark on HBase(也包括其它数据库)及HBase数据转为列存后的分析。为了满足Spark低成本运行的需求,我们即将支持Serverless的能力。Spark在数据库之间,处于一个胶水的作用,平台通过Spark打造数据处理的闭环系统以核心客户的核心问题,比如点触科技的游戏大数据平台
在线DB一般是业务系统连接DB的,但离线的作业与在线的平台不一样,需要提供Job的管理及离线定时运行,另外还需要支持交互式运行。在云HBase平台上,我们提供了 【数据工作台】来满足这一需求。数据工作台能力有:资源管理、作业管理、工作流、回话管理、交互式查询、及作业的告警。作业可以是jar包、python脚本、SQL脚本等;工作流可以把多个作业关联在一起,并可以周期性或者指定固定时间运行;回话管理可以启动一个在线的交互式Spark回话满足交互式查询的诉求;交互式查询可以满足在线运行 sql脚本、python及scala脚本。
云HBase构建了一整套的管理系统,支持全球部署、监控报警(包括云监控及原生自带监控页面)、在线扩容、安全白名单、VPC网络隔离、在线修改配置、公网访问、小版本在线一键升级、分阶段低峰期MajorCompaction优化、自动检测集群可用状态紧急报警人工干预、磁盘容量水位报警等等运维操作及自动化优化。 平台提供7*24小时人工答疑及咨询,可直接咨询钉钉号 云HBase答疑
。除此之外,打造了2大企业级特性,备份恢复、BDS服务
存储、检索、分析是BigData三大核心的能力,也是BigData NoSQL着力打造的核心能力,通过深度整合,更好解决客户风控、画像等数据驱动业务的问题。阿里云云HBase团队,基于云上环境的种种特性,打造了Native的众多优势,目前服务了数千家中小型企业。另外,为了服务中国广大的开发者,自从18年5月,发起成立了【中国HBase技术社区】,举办线下meetup 9场次,邀请内外部嘉宾数十人,报名2801人,公众号1.1w人,直播观看2.1+w人,影响数万企业。特别为开发者提供免费版新人1个月的免费试用,以方便其开发学习以及交流。
未来,我们将继续紧紧贴合云上用户需求打磨产品,打造核心竞争力,提升易用性,保障系统稳定性,以及引入Serverless特性以进一步降低成本。
If not now, when? If not me, who?
原文链接
本文为云栖社区原创内容,未经允许不得转载。