本文为[365天深度学习训练营]https://blog.csdn.net/qq_38251616/category_11951628.html中的学习博客。
今天学习博客,参考文章地址:深度学习100例-卷积神经网络(CNN)服装图像分类 | 第3天_K同学啊的博客-CSDN博客
活动地址:CSDN21天学习挑战赛
一、原理
CNN卷积神经网络主要执行了四个操作:卷积、非线性(ReLU)、池化或下采样、分类(全连接层)。
二、过程
1.导入库和数据集
import tensorflow as tf
from tensorflow.keras import datasets, layers, models
import matplotlib.pyplot as plt
(train_images, train_labels), (test_images, test_labels) = datasets.fashion_mnist.load_data()
2.归一化
# 将像素的值标准化至0到1的区间内。
train_images, test_images = train_images / 255.0, test_images / 255.0
train_images.shape,test_images.shape,train_labels.shape,test_labels.shape
图片是28*28,像素值介于0~255,标签是整数数组,介于0~9。print(a.shape) #输出数组的形状,逗号表示是一个元组。
3.调整图片格式
#调整数据到我们需要的格式
train_images = train_images.reshape((60000, 28, 28, 1))
test_images = test_images.reshape((10000, 28, 28, 1))
train_images.shape,test_images.shape,train_labels.shape,test_labels.shape
使用reshape改变数组,不改变当前数组,按照shape创建新的数组。从三维到四维数组,意义是什么?
4.可视化
class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']
plt.figure(figsize=(20,10))
for i in range(20):
plt.subplot(5,10,i+1)
plt.xticks([])
plt.yticks([])
plt.grid(False)
plt.imshow(train_images[i],cmap='gray')
plt.xlabel(class_names[train_labels[i]])
plt.show()
5.构建CNN网络
model = models.Sequential([
layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)), #卷积层1,卷积核3*3
layers.MaxPooling2D((2, 2)), #池化层1,2*2采样
layers.Conv2D(64, (3, 3), activation='relu'), #卷积层2,卷积核3*3
layers.MaxPooling2D((2, 2)), #池化层2,2*2采样
layers.Conv2D(64, (3, 3), activation='relu'), #卷积层3,卷积核3*3
layers.Flatten(), #Flatten层,连接卷积层与全连接层
layers.Dense(64, activation='relu'), #全连接层,特征进一步提取
layers.Dense(10) #输出层,输出预期结果
])
model.summary() # 打印网络结构
6.编译
model.compile(optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
7.训练模型
history = model.fit(train_images, train_labels, epochs=10,
validation_data=(test_images, test_labels))
8.显示测试集某一张图片
plt.imshow(test_images[1])
9.预测
import numpy as np
pre = model.predict(test_images)
print(class_names[np.argmax(pre[1])])
10.模型评估(不知道为啥会报错)
plt.plot(history.history['acc'], label='acc')
plt.plot(history.history['val_acc'], label = 'val_acc')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.ylim([0.5, 1])
plt.legend(loc='lower right')
plt.show()
test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2)
11.测试准确率
print("测试准确率为:",test_acc)
三、总结