TYD2019python机器学习实战笔记,初识 numpy 和 pandas

目录

 

目录

第一章:入学指南及其杂项

.ipynb 文件如何打开

python库安装工具

第二章:python科学计算库numpy

第三章:python数据分析处理库—Pandas  



第一章:入学指南及其杂项

在校生更偏重底层算法推导,而不仅仅是会用。

自己做笔记很重要,要用自己的话说,用自己的话写,用别人的容易忘。

最好的资源站点 GitHub,kaggle(找数据的,竞赛网站)。

案例积累很重要,因为实际接手项目时,都不是从头开始做的,都是在之前做过的案例或者学过的案例中找相似的地方套进去。 

.ipynb 文件如何打开

在安装好Anaconda之后,

1、打开开始菜单找到Anaconda3(64-bit)。

2、点击Anaconda Prompt(类似windows的命令行工具)。

3、找到你存放ipynb文件,小编这里是D盘。输入 d:

4、进入存放ipynb文件的目录。输入 cd 目录名

5、查看ipynb目录。输入dir (list命令也可以)

6、输入命令 jupyter lab 将在该目标下启动Jupyterlab。

.ipynb 文件如何打开(二)

一、找到安装jupyter Notebook的本地文件夹

TYD2019python机器学习实战笔记,初识 numpy 和 pandas_第1张图片

二、右键--属性--目标--复制目标中的内容至文档

TYD2019python机器学习实战笔记,初识 numpy 和 pandas_第2张图片

 三、将目标内容最后的%USERPROFILE%改为%1--保存为.bat文件

四、将.ipynb文件的打开方式改为上面保存的.bat文件

TYD2019python机器学习实战笔记,初识 numpy 和 pandas_第3张图片

 五、双击即可在Jupyter Notebook中打开本文档

python库安装工具

  1. 打开jupyter prompt 输入conda list  查看已安装的库
  2. pip install +包名 
  3. 如果2不成功,进入Window_python包安装页面
  4. ctrl+F找到要安装的包,点击进入下载
  5. 弹出页面中选中下载位置,下载到canda的环境中。(或者下到任何位置,因为pip已经配好了环境变量)
  6. 如果2步骤不成功并显示socket.timeout: The read operation timed out错误,一般是由于网速不稳定,下载过慢,超出默认时间,所以只要修改一下响应时间就好了。
  7. windows下输入 pip --default-timeout=100 install 包名
    linux下输入 pip --default-timeout=100 install -U 包名
  8. 如果步骤7还是不顶用,可以包源镜像:pip install -i https://pypi.tuna.tsinghua.edu.cn/simple 库名。例如:

    pip install -i https://pypi.tuna.tsinghua.edu.cn/simple superset

第二章:python科学计算库numpy

结构化数据(表格)在算法中运算都是以矩阵的形式。Numpy是做底层运算的,pandas是建立的Numpy基础之上的。

import Numpy as np

array = [1,2,3,4,5]
array + 1             #将会报错,不能加。

array = np.array([1,2,3,4,5])
print (type(array))  #
array2 = array + 1
array2               # array([2, 3, 4, 5, 6])

array2 * array       #array([ 3, 5, 7, 9, 11])

tang_list = [1,2,3,4,5]
tang_list.shape      #报错,没有用到工具包
np.array([[1,2,3],[4,5,6]])  #array([[1, 2, 3], [4, 5, 6]])
array.shape          #(2,3)两行,三列。

对于nparray结构来说,里面所有的元素必须是同一类型的 如果不是的话,会自动的向下进行转换

import Numpy as np

tang_list = [1,2,3,4,5.1]
tang_array = np.array(tang_list)
tang_array                           #array([1. , 2. , 3. , 4. , 5.1])

nparray基本属性操作

import Numpy as np

type(tang_array)   #numpy.ndarray
tang_array.dtype   #dtype('int32')
tang_array.itemsize   #4
tang_array.ndim       #数据的维度  1


tang_array.fill(0)
tang_array            #array([0, 0, 0, 0, 0])

索引与切片:跟Python都是一样的 还是从0开始的

import Numpy as np

tang_array = np.array([[1,2,3],
                      [4,5,6],
                      [7,8,9]])
tang_array.shape       #(3, 3)
tang_array.ndim        #2
tang_array[1,1]        #5

tang_array[:,1]        #   取所有样本第二列


tang_array2 = tang_array    #索引共享
tang_array2 = tang_array.copy()      #拷贝一份

Boolean类型索引

import Numpy as np

tang_array = np.arange(0,100,10)       #array([ 0, 10, 20, 30, 40, 50, 60, 70, 80, 90])
mask = np.array([0,0,0,1,1,1,0,0,1,1],dtype=bool)   #array([False, False, False,  True,  True,  True, False, False,  True,  True], dtype=bool)
tang_array[mask]  #array([30, 40, 50, 80, 90])

random_array = np.random.rand(10)  #array([ 0.51388374,  0.57986996,  0.05474169,0.5019837 ,  0.82705166, 0.95557716,  0.83348612,  0.32385451,  0.52586287,  0.92505535])
mask = random_array > 0.5      #array([ True,  True, False,  True,  True,  True,  True, False,  True,  True], dtype=bool)
np.where(tang_array > 30)      #返回的是索引数组  (array([3, 4,5,6,7,8,9], dtype=int64),)

type

import Numpy as np

tang_array.astype(np.float32) #array([ 1.,  2.,  3.,  4.,  5.], dtype=float32)

数值计算

import Numpy as np

tang_array = np.array([[1,2,3],[4,5,6]])
np.sum(tang_array)        #左上角加到右下角

np.sum(tang_array,axis=0)  #指定要进行的操作是沿着什么轴(维度)array([5, 7, 9])
tang_array.prod()          #左上角乘到右下角  
tang_array.prod(axis = 0)       #array([ 4, 10, 18])

tang_array.argmin()              #找最小值索引

tang_array.std()                #求标准差
tang_array.var()                #求方差

tang_array.clip(2,4)          #截断操作   array([[2, 2, 3], [4, 4, 4]])
tang_array.round()            #精确到小数点后一位的四舍五入

排序

import numpy as np


tang_array = np.array([[1.5,1.3,7.5],
                      [5.6,7.8,1.2]])

np.sort(tang_array,axis = 0)
np.argsort(tang_array)         #array([[1, 0, 2],[2, 0, 1]], dtype=int64)

tang_array = np.linspace(0,10,10)   #从0开始到10结束,10个数。
values = np.array([2.5,6.5,9.5])
np.searchsorted(tang_array,values)       #一个数组插入另外一个,返回索引数组。array([3, 6, 9], dtype=int64)

index = np.lexsort([-1*tang_array[:,0],tang_array[:,2]])  #在第一列降序的基础上,第二列升序

数组形状

import numpy as np


tang_array = np.arange(10)      #array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
tang_array.shape = 2,5          #array([[0, 1, 2, 3, 4],[5, 6, 7, 8, 9]])
tang_array.reshape(1,10)        #array([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]]) 分清一二维的表示区别

tang_array = tang_array[np.newaxis,:]     #加新轴  一个样本十个特征
tang_array = tang_array[:,np.newaxis]     
tang_array = tang_array[:,np.newaxis,np.newaxis]   #(10, 1, 1, 1)

tang_array = tang_array.squeeze()                  #(10,)  压缩没有数据的维度

tang_array.T                                       #矩阵转置

a = np.array([[123,456,678],[3214,456,134]])
b = np.array([[1235,3124,432],[43,13,134]])
c = np.concatenate((a,b),axis = 0)                 #横着拼接,往下加

a.flatten()                    #array([ 123,  456,  678, 3214,  456,  134])拉长操作

矩阵的生成

import Numpy as np


np.zeros((3,3))     #array([[ 0.,  0.,  0.],[ 0.,  0.,  0.],[ 0.,  0.,  0.]])
np.ones((3,3)) * 8   #array([[ 8.,  8.,  8.],[ 8.,  8.,  8.],[ 8.,  8.,  8.]])
a = np.empty(6)        #全零
a.fill(1)              #array([ 1.,  1.,  1.,  1.,  1.,  1.])


np.zeros_like(tang_array)    
np.ones_like(tang_array)     #按照之前的维度构造新的矩阵。

矩阵运算

import Numpy as np


x = np.array([5,5])
y = np.array([2,2])

np.multiply(x,y)         #array([10, 10])
np.dot(x,y)              #矩阵乘法,一维时候做内积(对应位置相乘相加)

随机模块

import Numpy as np


np.random.rand(3,2)   #array([[ 0.87876027,  0.98090867],[ 0.07482644,  0.08780685],[ 0.6974858 ,  0.35695858]])

#返回的是随机的整数,左闭右开
np.random.randint(10,size = (5,4))  

np.random.randint(0,10,3)      #array([7, 7, 5])  从0开始 到10结束。取三个。


mu, sigma = 0,0.1
np.random.normal(mu,sigma,10)     # 指定参数构造高斯分布
np.set_printoptions(precision = 2)       #设置精度

#洗牌
tang_array = np.arange(10)        
np.random.shuffle(tang_array)        #array([6, 2, 5, 7, 4, 3, 1, 0, 8, 9])

#随机种子
np.random.seed(100)                #指定随机种子之后每次随机完结果都是一样的。

#seed( ) 用于指定随机数生成时所用算法开始的整数值,如果使用相同的seed( )值,则每次生成的随即数都相同,如果不设置这个值,则系统根据时间来自己选择这个值,此时每次生成的随机数因时间差异而不同。

读写文件

import numpy as np

%%writefile zhang.txt        #magi命令按惯例要写在第一行
1 2 3 4
5 6 7 8 

data2 = np.loadtxt('zhang2.txt',delimiter=',',skiprows=1)
print(data2)                   #[6. 7. 8. 9. 0.]  delimiter分隔符   skiprows忽略一行

zhang3 = np.array([[1,2,3],[4,5,6]])
np.savetxt('zhang3.txt',zhang3,fmt='%d',delimiter=',')   #保存矩阵到文件,

#读写array结构,之前都是txt和CSV的文件
zhang_array = np.array([[1,2,3],[4,5,6]])
np.save('zhang4.npy',zhang_array)                  #注意这里的文件后缀npy

第三章:python数据分析处理库—Pandas  

import pandas as pd


df = pd.read_csv('I:/ITLearningMaterials/TYD/Python_dataAnalyseAndMachineLearning/Chapter3_Pandas_Utils/Pandas_code/titanic_train.csv')
df.head()               #注意斜杠的方向,最好用英文创建文件名。

df.info()               #显示列表信息
df.values               #重要,将表格以array形式展现。

创建一个dataFrame结构

import pandas as pd 

data = {'coutry':['aaa','bbb','ccc'],'population':[243,432,785]}
df_data = pd.DataFrame(data)        

取指定数据

import pandas as pd


age = df['Age']

自定义索引

import pandas as pd


df = df.set_index('Name')

describe()可以得到数据的基本统计特性  like this 

TYD2019python机器学习实战笔记,初识 numpy 和 pandas_第4张图片

df.describe()

Pandas 索引,用loc(标签)和iloc(位置)定位

import pandas as pd

# boolean 做索引
df['Fare']>40                                  #展示所有数据的Boolean值

df[df['Fare']>50][:]                           #展示所有为true的数据条
df[df['Sex'] == 'male'][:]                     #展示所有男性
df.loc[df['Sex'] == 'male','Age'].mean()       #计算所有男性的平均年龄

groupBy函数

import pandas as pd
import numpy as np

#  求解所有A组中的总和,
df = pd.DataFrame({'key':['A','B','C','A','B','C','A','B','C'],'data':[12,32,2,4,32,213,4,23,54]})

for key in ['A','B','C']:                 #常规方法
    print(key,df[df['key'] == key].sum())   

df.groupby('key').sum()                   # 使用groupby函数 更便捷

df.groupby('key').aggregate(np.mean)      #按组别计算均值


df.groupby('Sex')['Age'].mean()           #统计不同性别的年龄均值

数值计算——二元统计

import pandas as pd

df.cov()            #协方差
df.corr()           #相关系数

df['Age'].value_counts()        #对年龄相同值计数
df['Age'].value_counts(ascending=True,bins=5)    #升序排列,分成五组

Series 结构的增删改查

import pandas as pd 

# 构造series
data = [12,43,23]
index = ['a','b','c']
s = pd.Series(index = index,data = data)

#查
s.loc['a']
s.iloc[2]

#改
s1 = s.copy()
s1[2] = 100

#增
s1['j'] = 100

#删
del s1['j']

merge操作

import pandas as pd 

left = pd.DataFrame({'Key1':['K0','K1','K2','K3'],
                    'Key2':['K0','K1','K2','K3'],
                    'A':['A0','A1','A2','A3'],
                    'B':['B0','B1','B2','B3']})
right = pd.DataFrame({'Key1':['K0','K1','K2','K3'],
                      'Key2':['K0','K1','K2','K4'],
                     'C':['C0','C1','C2','C3'],
                     'D':['D0','D1','D2','D3']})
res = pd.merge(left,right,on = ['Key1','Key2'],how = 'outer',indicator = True)  #不写how属性默认内连接,indicator是最后一行 both left_only

TYD2019python机器学习实战笔记,初识 numpy 和 pandas_第5张图片

显示设置

import pandas as pd

zhang = pd.read_csv('I:/ITLearningMaterials/TYD/Python_dataAnalyseAndMachineLearning/Chapter3_Pandas_Utils/Pandas_code/titanic_train.csv')
pd.set_option('display.max_rows',1000)   #展示1000条数据,其他省略号。
pd.set_option('display.max_columns',3)   #同理

pivot 函数

import pandas as pd


example = pd.DataFrame({'Month': ["January", "January", "January", "January", 
                                  "February", "February", "February", "February", 
                                  "March", "March", "March", "March"],
                   'Category': ["Transportation", "Grocery", "Household", "Entertainment",
                                "Transportation", "Grocery", "Household", "Entertainment",
                                "Transportation", "Grocery", "Household", "Entertainment"],
                   'Amount': [74., 235., 175., 100., 115., 240., 225., 125., 90., 260., 200., 120.]})

example_pivot = example.pivot(index = 'Category',columns= 'Month',values = 'Amount')  #属性分别代表横标,纵标,数值。

df = pd.read_csv('./data/titanic.csv')    #默认就是求平均
df.pivot_table(index = 'Sex',columns='Pclass',values='Fare',aggfunc='count')  #不默认的情况
df.pivot_table(index = 'Sex',columns='Pclass',values='Fare')  #统计不同性别在不同船舱的平均价格

df['Underaged'] = df['Age'] <= 18
df.pivot_table(index = 'Underaged',columns='Sex',values='Survived',aggfunc='mean')  #结果见下图

TYD2019python机器学习实战笔记,初识 numpy 和 pandas_第6张图片

时间操作

import pandas as pd 

import datetime 

dt = datetime.datetime(year=2020,month=2,day=7,hour=15,minute=3)  #注意data和date
dt = pd.Timestamp('2020-2-7')             #Timestamp('2017-11-24 00:00:00')
ts.month
ts.day                                    #
td = pd.Timedelta('5 days')               #Timedelta('5 days 00:00:00')
ts + pd.Timedelta('5 days')               

s = pd.Series(pd.date_range(start='2020-2-7',periods=10,freq='12H'))  #时间序列,开始时间,十条数据,间隔12小时


df = pd.read_csv('I:/ITLearningMaterials/TYD/Python_dataAnalyseAndMachineLearning/Chapter3_Pandas_Utils/Pandas_code/data/flowdata.csv')
df['Time'] = pd.to_datetime(df['Time'])    #将时间列格式标准化
df = df.set_index('Time')                  #将时间列设置为索引列
df = pd.read_csv('I:/ITLearningMaterials/TYD/Python_dataAnalyseAndMachineLearning/Chapter3_Pandas_Utils/Pandas_code/data/flowdata.csv',index_col=0,parse_dates=True)    #读取的同时将时间列设置为索引列

data[data.index.month == 1]         #取所有一月份的数据
data.resample('D').mean().head()       #按天进行重采样,每天取均值,同理可以对三天重采样,按月等等

常用操作

import pandas as pd


data = pd.DataFrame({'group':['a','a','a','b','b','b','c','c','c'],
                    'data':[4,3,2,1,12,3,4,5,7]})
data.sort_values(by=['group','data'],ascending=[False,True],inplace=True) #在group降序的基础上data升序
data.drop_duplicates()                   #去掉所有列都相同的项,
data.drop_duplicates(subset='k1')        #去掉某一列相同的项

apply函数

import pandas as pd 

data = pd.DataFrame({'food':['A1','A2','B1','B2','B3','C1','C2'],'data':[1,2,3,4,5,6,7]})
def food_map(series):
    if series['food'] == 'A1':
        return 'A'
    elif series['food'] == 'A2':
        return 'A'
    elif series['food'] == 'B1':
        return 'B'
    elif series['food'] == 'B2':
        return 'B'
    elif series['food'] == 'B3':
        return 'B'
    elif series['food'] == 'C1':
        return 'C'
    elif series['food'] == 'C2':
        return 'C'
data['food_map'] = data.apply(food_map,axis = 'columns')  #对其中的每一个样本使用一次food_map函数



data = pd.read_csv('I:/ITLearningMaterials/TYD/Python_dataAnalyseAndMachineLearning/Chapter3_Pandas_Utils/Pandas_code/titanic_train.csv')
def not_null_count(columns):
    columns_null = pd.isnull(columns)    #对每列操作,如果为null则true否则为false
    null = columns[columns_null]         #对一个Boolean列操作
    return len(null)

pd.set_option('display.max_rows',1000)
columns_null_count = data.apply(not_null_count)

常用操作

import pandas as pd 

import numpy as np



ages = [15,18,20,21,22,34,41,52,63,79]
bins = [10,40,80]
bins_res = pd.cut(ages,bins)    #bins 如果传入数值就按数值均分,如果是数组就按数组间隔均分
                                #[(10, 40], (10, 40], (10, 40], (10, 40], (10, 40], (10,40], (40, 80], (40, 80], (40, 80], (40, 80]]Categories (2, interval[int64]): [(10, 40] < (40, 80]]
pd.value_counts(bins_res)  #对每个区间计数
group_names = ['Yonth','Mille','Old'] 
pd.value_counts(pd.cut(ages,[10,20,50,80],labels=group_names))   #对每组贴标签然后计数


df = pd.DataFrame({'data1':np.random.randn(5),
                  'data2':np.random.randn(5)})
df['data'] = df['data1']/df['data2']   #添加新的一行,为前两行的比值

df2.drop('ration',axis='columns',inplace=True)   #删除列, inplace 参数在很多函数中都会有,它的作用是:是否在原对象基础上进行修改,inplace = False:对数据进行修改,创建并返回新的对象承载其修改结果。

df.isnull()   #改变成Boolean的表,nan显示为true
df.isnull().any(axis = 1)   #axis=0指的是逐行,axis=1指的是逐列。  每一列中只要有一个是true则为true否则为false
df[df.isnull().any(axis = 1)]  #能显示含有nan的具体行
df.fillna(5)           #将nan填充为5

字符串操作

import pandas as pd

s1 = pd.DataFrame(np.random.randn(3,2),index=range(3),columns=['A a','B b'])
s1.columns = s1.columns.str.replace(' ','_')   #改变列条目名字的形式

s3 = pd.Series(['a_b_C','c_d_e','f_g_h'])
s3.str.split('_')                   #分了之后还在同一行,用列表的形式表示
s3.str.split('_',expand=True)       #分成不同的行



 

你可能感兴趣的:(算法)