USM锐化之openCV实现,附赠调整对比度函数

  常用Photoshop的玩家都知道Unsharp Mask(USM)锐化,它是一种增强图像边缘的锐化算法,原理在此处,如果你想使用这个算法,强烈推荐看一下。本文进行一下简单的介绍,USM锐化一共分为三步,第一步生成原始图片src的模糊图片和高对比度图片,记为blur和contrast.第二,把src和blur作差,得到一张差分图片,记为diff,它就是下图的UnsharpMask。然后把src和contras按一定的比例相加,这个比例由diff控制,最终得到锐化图片。USM有一个缺点,锐化后最大和最小的像素值会超过原始图片,如下图红色虚线和白色实线所示。

USM锐化之openCV实现,附赠调整对比度函数
 
代码如下:
void MyTreasureBox::UnsharpMask(const IplImage* src, IplImage* dst, float amount, float radius, uchar threshold, int contrast)

{

    if(!src)return ;



    int imagewidth = src->width;

    int imageheight = src->height;

    int channel = src->nChannels;



    IplImage* blurimage =    cvCreateImage(cvSize(imagewidth,imageheight), src->depth, channel);

    IplImage* DiffImage =    cvCreateImage(cvSize(imagewidth,imageheight), 8, channel);



    //原图的高对比度图像

    IplImage* highcontrast = cvCreateImage(cvSize(imagewidth,imageheight), 8, channel);

    AdjustContrast(src, highcontrast, contrast);



    //原图的模糊图像

    cvSmooth(src, blurimage, CV_GAUSSIAN, radius);



    //原图与模糊图作差

    for (int y=0; y<imageheight; y++)

    {

        for (int x=0; x<imagewidth; x++)

        {

            CvScalar ori = cvGet2D(src, y, x);

            CvScalar blur = cvGet2D(blurimage, y, x);

            CvScalar val;

            val.val[0] = abs(ori.val[0] - blur.val[0]);

            val.val[1] = abs(ori.val[1] - blur.val[1]);

            val.val[2] = abs(ori.val[2] - blur.val[2]);



            cvSet2D(DiffImage, y, x, val);

        }

    }



    //锐化

    for (int y=0; y<imageheight; y++)

    {

        for (int x=0; x<imagewidth; x++)

        {

            CvScalar hc = cvGet2D(highcontrast, y, x);

            CvScalar diff = cvGet2D(DiffImage, y, x);

            CvScalar ori = cvGet2D(src, y, x);

            CvScalar val;



            for (int k=0; k<channel; k++)

            {

                if (diff.val[k] > threshold)

                {

                    //最终图像 = 原始*(1-r) + 高对比*r

                    val.val[k] = ori.val[k] *(100-amount) + hc.val[k] *amount;

                    val.val[k] /= 100;

                }

                else

                {

                    val.val[k] = ori.val[k];

                }

            }

            cvSet2D(dst, y, x, val);

        }

    }



    cvReleaseImage(&blurimage);

    cvReleaseImage(&DiffImage);

}

 

其中用到一个调整图像对比度的函数

void MyTreasureBox::AdjustContrast(const IplImage* src, IplImage* dst, int contrast)

{

    if (!src)return ;



    int imagewidth = src->width;

    int imageheight = src->height;

    int channel = src->nChannels;



    //求原图均值

    CvScalar mean = {0,0,0,0};

    for (int y=0; y<imageheight; y++)

    {

        for (int x=0; x<imagewidth; x++)

        {                     

            CvScalar ori = cvGet2D(src, y, x);

            for (int k=0; k<channel; k++)

            {

                mean.val[k] += ori.val[k];

            }         

        }

    }

    for (int k=0; k<channel; k++)

    {

        mean.val[k] /= imagewidth * imageheight;

    }



    //调整对比度

    if (contrast <= -255)    

    {

        //当增量等于-255时,是图像对比度的下端极限,此时,图像RGB各分量都等于阀值,图像呈全灰色,灰度图上只有1条线,即阀值灰度;

        for (int y=0; y<imageheight; y++)

        {

            for (int x=0; x<imagewidth; x++)

            {

                cvSet2D(dst, y, x, mean);

            }

        }

    } 

    else if(contrast > -255 &&  contrast <= 0)

    {

        //(1)nRGB = RGB + (RGB - Threshold) * Contrast / 255

        // 当增量大于-255且小于0时,直接用上面的公式计算图像像素各分量

        //公式中,nRGB表示调整后的R、G、B分量,RGB表示原图R、G、B分量,Threshold为给定的阀值,Contrast为处理过的对比度增量。

        for (int y=0; y<imageheight; y++)

        {

            for (int x=0; x<imagewidth; x++)

            {

                CvScalar nRGB;

                CvScalar ori = cvGet2D(src, y, x);

                for (int k=0; k<channel; k++)

                {

                    nRGB.val[k] = ori.val[k] + (ori.val[k] - mean.val[k]) *contrast /255;

                }

                cvSet2D(dst, y, x, nRGB);

            }

        }

    }

    else if(contrast >0 && contrast <255)

    {

        //当增量大于0且小于255时,则先按下面公式(2)处理增量,然后再按上面公式(1)计算对比度:

        //(2)、nContrast = 255 * 255 / (255 - Contrast) - 255

        //公式中的nContrast为处理后的对比度增量,Contrast为给定的对比度增量。                



        CvScalar nRGB;

        int nContrast = 255 *255 /(255 - contrast) - 255;



        for (int y=0; y<imageheight; y++)

        {

            for (int x=0; x<imagewidth; x++)

            {

                CvScalar ori = cvGet2D(src, y, x);

                for (int k=0; k<channel; k++)

                {

                    nRGB.val[k] = ori.val[k] + (ori.val[k] - mean.val[k]) *nContrast /255;

                }

                cvSet2D(dst, y, x, nRGB);

            }

        }

    }

    else

    {

        //当增量等于 255时,是图像对比度的上端极限,实际等于设置图像阀值,图像由最多八种颜色组成,灰度图上最多8条线,

        //即红、黄、绿、青、蓝、紫及黑与白;        

        for (int y=0; y<imageheight; y++)

        {

            for (int x=0; x<imagewidth; x++)

            {

                CvScalar rgb;

                CvScalar ori = cvGet2D(src, y, x);

                for (int k=0; k<channel; k++)

                {

                    if (ori.val[k] > mean.val[k])

                    {

                        rgb.val[k] = 255;

                    }

                    else

                    {

                        rgb.val[k] = 0;

                    }                    

                }

                cvSet2D(dst, y, x, rgb);

            }

        }

    }

}

 

你可能感兴趣的:(opencv)