大家可能可能会面临这个问题:
成堆的科学实验数据需要导入 Excel 进行分析
成堆的销售数据表格等待统计
成堆的商品数据等待分析
作为人生苦短的 Python 程序员,该如何优雅地操作 Excel?其实Python提供的操作Excel的库有7个之多,到底哪个更好使用更加方便呢?
首先让我们来整体把握下不同库的特点:
xlrd是一个从Excel文件读取数据和格式化信息的库,支持.xls以及.xlsx文件。官方文档:http://xlrd.readthedocs.io/en/latest/
xlwt是一个用于将数据和格式化信息写入旧Excel文件的库(如.xls)。官方文档:https://xlwt.readthedocs.io/en/latest/
xlutils是一个处理Excel文件的库,依赖于xlrd和xlwt。它仅支持.xls文件的操作。官方文档:http://xlutils.readthedocs.io/en/latest/
xlwings 简单强大,使用方便,可替代VBA。xlwings可以支持.xls读,支持.xlsx文件读写。官方文档:http://docs.xlwings.org/en/stable/index.html
XlsxWriter 是一个用来写 .xlsx 文件格式的模块,但不能用来读取和修改 Excel 文件。官方文档:https://xlsxwriter.readthedocs.io/
openpyxl是一个用于读取和编写Excel 2010 xlsx/xlsm/xltx/xltm文件的库。官方文档:https://openpyxl.readthedocs.io/en/stable/
pandas是一个进行数据处理和分析的强大模块,有时也可以用来自动化处理Excel,官方文档:http://pandas.pydata.org/
另外还有win32com,通过名字大家就知道离不开windows系统,该库存在于pywin32中,是一个读写和处理Excel文件的库。但是我的电脑是Mac,就不做展开了。
官方文档:http://pythonexcels.com/python-excel-mini-cookbook/
DataNitro呢?严格来说它是一个Excel 的插件,安装也需单独到官网下载。也是仅支持windows系统。
官方文档:https://datanitro.com/
具体内容大家也可以参看:http://www.python-excel.org
7个模块均为非标准库,因此都需要在命令行中 pip/pip3
进行安装:
pip/pip3 install xlrd
pip/pip3 install xlwt
pip/pip3 install xlutils
pip/pip3 install xlwings
pip/pip3 install XlsxWriter
pip/pip3 install openpyxl
pip/pip3 install pandas
提示:
xlutils 仅支持 xls 文件,即2003以下版本;
xlwings 安装成功后,如果运行提示报错“ImportError: no module named win32api”,请再安装 pypiwin32 或者 pywin32 包;
模块的导入跟以往导入其他模块一样,使用import进行导入,如果名字比较长还可以使用as起个别名。
import xlrd
import xlwt
import xlwings as xw
import xlsxwriter
import openpyxl
import pandas as pd
xlutils 模块是 xlrd和 xlwt之间的桥梁,最核心的作用是拷贝一份通过 xlrd
读取到内存中的 .xls
对象,然后再拷贝对象上通过 xlwt
修改 .xls
表格的内容。xlutils
可以将 xlrd
的 Book 对象复制转换为xlwt 的Workbook 对象。
具体使用时通常导入的是模块中的copy子模块:
import xlutils.copy
由于设计模式的不同,导致基本的新建文件、修改文件、保存文件等功能在不同的库中存在着一定差异,比如xlsxwriter并不支持打开或修改现有文件,xlwings不支持对新建文件的命名等等,但是分析发现xlwings和openpyxl是对excel操作支持最多的两个库。
特别要说明一下xlutils库,xlrd
、xlwt
、xlutils
各自的功能都有局限性,但三者互为补充,覆盖了Excel文件尤其是 .xls
文件的操作。xlwt
可以生成 .xls
文件,xlrd
可以读取已经存在的 .xls
文件,xlutils
连接 xlrd
和 xlwt
两个模块,使用户可以同时读写一个 .xls
文件。简单来说,xlrd
负责读、xlwt
负责写、xlutils
负责提供辅助和衔接
对几个库做了最基本的写入和读取测试,分别使用不同库进行添加及读取 5000行 * 800列 数据操作,得到所用时间,重复操作取平均值。另外在不同的电脑配置,不同的环境下结果肯定会有出入,数据仅供参考。
openpyxl虽然操作Excel的功能强大,但读写性能过于糟糕,尤其是写大表时,会占用大量内存,开启read_only和write_only模式后对其性能有大幅提升,尤其是对读的性能提升很大,使其几乎不耗时。
pandas把Excel当作数据读写的容器,为其强大的数据分析服务,因此读写性能表现中规中矩,但其对Excel文件兼容性是最好的,支持读写.xls,.xlsx文件,且支持只读表中单一工作页。
同样支持此功能的库还有xlrd,但xlrd只支持读,并不支持写,且性能不突出,需要配合xlutils进行Excel操作。
xlsxwriter功能单一,一般用来创建.xlsx文件,写入性能中庸。
综合考虑,xlwings的表现最佳,正如其名,xlwings——Make Excel Fly!
通过以上分析,相信大家对几个库都有了简单的了解。你可根据自己的需求和生产环境,选择合适的 Python-Excel 模块
附上一部分常用代码:
xlwings基本代码
import xlwings as xw
#连接到excel
workbook = xw.Book('你的excel文件的路径')#连接excel文件
#连接到指定单元格
data_range = workbook.sheets('Sheet1').range('A1')
#写入数据
data_range.value = ['a','b','c']
#保存
workbook.save()
xlsxwriter基本代码
import xlsxwriter as xw
#新建excel
workbook = xw.Workbook('你的excel文件的路径')
#新建工作薄
worksheet = workbook.add_worksheet()
#写入数据
worksheet.wirte('A1','a')
#关闭保存
workbook.close()
xlutils基本代码
import xlrd #读取数据
import xlwt #写入数据
import xlutils.copy #操作excel
# 通过xlrd读取数据
#打开excel文件
workbook = xlrd.open_workbook('你的excel文件的路径')
#获取表单
worksheet = workbook.sheet_by_index(0)
#读取数据
data = worksheet.cell_value(0,0)
# 通过xlwt写入数据
#新建excel
wb = xlwt.Workbook()
#添加工作薄
sh = wb.add_sheet('Sheet1')
#写入数据
sh.write(0,0,'abc')
#保存文件
wb.save('myexcel.xls')
#打开excel文件
book = xlrd.open_workbook('你的excel文件的路径')
#复制一份
new_book = copy(book)
#拿到工作薄
worksheet = new_book.getsheet(0)
#写入数据
worksheet.write(0,0,'mydata')
#保存
new_book.save()
openpyxl基本代码
import openpyxl
# 新建文件
workbook = openpyxl.Workbook()
# 写入文件
sheet = workbook.activesheet['A1']='A1'
# 保存文件
workbook.save('你的excel保存路径')
本文目的并不是要评出一个最好的库,仅是从不同角度对不同库进行对比,希望能够让大家了解各个库所擅长的工作。
只有充分了解不同工具的特点,才能够在不同的场景下灵活运用不同的方法来高效解决问题!
-END-
扫码添加请备注:python,进群与宋老师面对面交流:517745409