一维构筑、二维构筑、全卷积构筑。
卷积神经网络(ConvolutionalNeuralNetworks,CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(FeedforwardNeuralNetworks),是深度学习(deeplearning)的代表算法之一。
卷积神经网络具有表征学习(representationlearning)能力,能够按其阶层结构对输入信息进行平移不变分类(shift-invariantclassification),因此也被称为“平移不变人工神经网络(Shift-InvariantArtificialNeuralNetworks,SIANN)”。
卷积神经网络的连接性:卷积神经网络中卷积层间的连接被称为稀疏连接(sparseconnection),即相比于前馈神经网络中的全连接,卷积层中的神经元仅与其相邻层的部分,而非全部神经元相连。
具体地,卷积神经网络第l层特征图中的任意一个像素(神经元)都仅是l-1层中卷积核所定义的感受野内的像素的线性组合。
卷积神经网络的稀疏连接具有正则化的效果,提高了网络结构的稳定性和泛化能力,避免过度拟合,同时,稀疏连接减少了权重参数的总量,有利于神经网络的快速学习,和在计算时减少内存开销。
卷积神经网络中特征图同一通道内的所有像素共享一组卷积核权重系数,该性质被称为权重共享(weightsharing)。
权重共享将卷积神经网络和其它包含局部连接结构的神经网络相区分,后者虽然使用了稀疏连接,但不同连接的权重是不同的。权重共享和稀疏连接一样,减少了卷积神经网络的参数总量,并具有正则化的效果。
在全连接网络视角下,卷积神经网络的稀疏连接和权重共享可以被视为两个无限强的先验(pirior),即一个隐含层神经元在其感受野之外的所有权重系数恒为0(但感受野可以在空间移动);且在一个通道内,所有神经元的权重系数相同。
谷歌人工智能写作项目:神经网络伪原创
写作猫。
卷积神经网络(ConvolutionalNeuralNetworks,CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(FeedforwardNeuralNetworks),是深度学习(deeplearning)的代表算法之一。
卷积神经网络具有表征学习(representationlearning)能力,能够按其阶层结构对输入信息进行平移不变分类(shift-invariantclassification),因此也被称为“平移不变人工神经网络。
卷积神经网络的研究的最新进展引发了人们完善立体匹配重建热情。从概念看,基于学习算法能够捕获全局的语义信息,比如基于高光和反射的先验条件,便于得到更加稳健的匹配。
目前已经探求一些两视图立体匹配,用神经网络替换手工设计的相似性度量或正则化方法。这些方法展现出更好的结果,并且逐步超过立体匹配领域的传统方法。
事实上,立体匹配任务完全适合使用CNN,因为图像对是已经过修正过的,因此立体匹配问题转化为水平方向上逐像素的视差估计。
与双目立体匹配不同的是,MVS的输入是任意数目的视图,这是深度学习方法需要解决的一个棘手的问题。
而且只有很少的工作意识到该问题,比如SurfaceNet事先重建彩色体素立方体,将所有像素的颜色信息和相机参数构成一个3D代价体,所构成的3D代价体即为网络的输入。
然而受限于3D代价体巨大的内存消耗,SurfaceNet网络的规模很难增大:SurfaceNet运用了一个启发式的“分而治之”的策略,对于大规模重建场景则需要花费很长的时间。
。
感受野计算时有下面的几个情况需要说明:(1)第一层卷积层的输出特征图像素的感受野的大小等于滤波器的大小(2)深层卷积层的感受野大小和它之前所有层的滤波器大小和步长有关系(3)计算感受野大小时,忽略了图像边缘的影响,即不考虑padding的大小,关于这个疑惑大家可以阅读一下参考文章2的解答进行理解这里的每一个卷积层还有一个strides的概念,这个strides是之前所有层stride的乘积。
即strides(i)=stride(1)*stride(2)*...*stride(i-1)关于感受野大小的计算采用toptodown的方式,即先计算最深层在前一层上的感受野,然后逐渐传递到第一层,使用的公式可以表示如下: RF=1#待计算的featuremap上的感受野大小forlayerin(toplayerTodownlayer):RF=((RF-1)*stride)+fsizestride表示卷积的步长;fsize表示卷积层滤波器的大小用python实现了计算Alexnetzf-5和VGG16网络每层输出featuremap的感受野大小,实现代码:#!/usr/bin/envpythonnet_struct={'alexnet':{'net':[[11,4,0],[3,2,0],[5,1,2],[3,2,0],[3,1,1],[3,1,1],[3,1,1],[3,2,0]],'name':['conv1','pool1','conv2','pool2','conv3','conv4','conv5','pool5']},'vgg16':{'net':[[3,1,1],[3,1,1],[2,2,0],[3,1,1],[3,1,1],[2,2,0],[3,1,1],[3,1,1],[3,1,1],[2,2,0],[3,1,1],[3,1,1],[3,1,1],[2,2,0],[3,1,1],[3,1,1],[3,1,1],[2,2,0]],'name':['conv1_1','conv1_2','pool1','conv2_1','conv2_2','pool2','conv3_1','conv3_2','conv3_3','pool3','conv4_1','conv4_2','conv4_3','pool4','conv5_1','conv5_2','conv5_3','pool5']},'zf-5':{'net':[[7,2,3],[3,2,1],[5,2,2],[3,2,1],[3,1,1],[3,1,1],[3,1,1]],'name':['conv1','pool1','conv2','pool2','conv3','conv4','conv5']}}imsize=224defoutFromIn(isz,net,layernum):totstride=1insize=iszforlayerinrange(layernum):fsize,stride,pad=net[layer]outsize=(insize-fsize+2*pad)/stride+1insize=outsizetotstride=totstride*stridereturnoutsize,totstridedefinFromOut(net,layernum):RF=1forlayerinreversed(range(layernum)):fsize,stride,pad=net[layer]RF=((RF-1)*stride)+fsizereturnRFif__name__=='__main__':print"layeroutputsizesgivenimage=%dx%d"%(imsize,imsize)fornetin():print'************netstructruenameis%s**************'%netforiinrange(len(net_struct[net]['net'])):p=outFromIn(imsize,net_struct[net]['net'],i+1)rf=inFromOut(net_struct[net]['net'],i+1)print"LayerName=%s,Outputsize=%3d,Stride=%3d,RFsize=%3d"%(net_struct[net]['name'][i],p[0],p[1],rf)。
人工智能是当下很火热的话题,其与大数据的完美结合应用于多个场景,极大的方便了人类的生活。而人工智能又包含深度学习和机器学习两方面的内容。深度学习又以计算机视觉和自然语言处理两个方向发展的最好,最火热。
大家对于自然语言处理的接触可能不是很多,但是说起计算机视觉,一定能够马上明白,因为我们每天接触的刷脸支付等手段就会和计算机视觉挂钩。可以说计算机视觉的应用最为广泛。
计算机视觉的定义是:基于感知对象做出对客观对象和场景有用的决策。目前发展较为主流的几个方面分别是:图像分类、对象检测、目标跟踪、语义分割和实例分割。
具体到实际应用上有人脸识别、图像检索、监控监测、生物识别以及汽车的自动驾驶等。图像分类,就是对给定的测试对象类别进行预测,比如在一堆猫和狗的图片中区分出狗。
目前用于图像分类的算法较为流行的框架是卷积神经网络,该算法在GPU上有良好的表现,通常在一周内就能完成训练。对象检测,就是在给定图片中把要检测的内容框选并标注出。
若将卷积神经网络用在对象检测上,需要很大的计算量,因此,常用的算法是基于区域的卷积神经网络,将图片分为很多个区域,并在这些区域中使用卷积神经网络的算法。
目标跟踪,就是在某种场景下跟踪特定对象的过程,在无人驾驶领域中有很重要的应用。目前较为流行的目标跟踪算法是基于堆叠自动编码器的DLT。语义分割,则是将图像分为像素组,再进行标记和分类。
目前的主流算法都使用完全卷积网络的框架。实例分割,是指将不同类型的实例分类,比如用4种不同颜色来标记4只猫。目前用于实例分割的主流算法是MaskR-CNN。
深度学习常见的3种算法有:卷积神经网络、循环神经网络、生成对抗网络。
卷积神经网络(ConvolutionalNeuralNetworks,CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(FeedforwardNeuralNetworks),是深度学习的代表算法之一。
循环神经网络(RecurrentNeuralNetwork,RNN)是一类以序列数据为输入,在序列的演进方向进行递归且所有节点(循环单元)按链式连接的递归神经网络。
生成对抗网络(GAN,GenerativeAdversarialNetworks)是一种深度学习模型,是最近两年十分热门的一种无监督学习算法。