深度学习 PyTorch 一维卷积

  • 所谓的一维卷积,也就是卷积核是一维的。原理和2D Conv类似,只不过1D Conv的卷积核移动方向只有一个,从滑动窗口的直观角度来看,多通道一维卷积核在数据长度方向上滑动

  • 而且每卷积核个数也等于输入数据的通道数。

  • 设定多少的输出通道,就会有多少卷积核

  • 实际操作中,以点云文件为例:包含nx3的数据,进行卷积前首先要交换样本个数与通道。

  • ##代码备份##

import torch
import torch.nn as nn
from numpy import *


# Args:
#         in_channels (int): Number of channels in the input image  {输入通道数}
#         out_channels (int): Number of channels produced by the convolution  {输出通道}
#         kernel_size (int or tuple): Size of the convolving kernel
#         stride (int or tuple, optional): Stride of the convolution. Default: 1
#         padding (int or tuple, optional): Zero-padding added to both sides of
#             the input. Default: 0
#         padding_mode (string, optional): ``'zeros'``, ``'reflect'``,
#             ``'replicate'`` or ``'circular'``. Default: ``'zeros'``
#         dilation (int or tuple, optional): Spacing between kernel
#             elements. Default: 1
#         groups (int, optional): Number of blocked connections from input
#             channels to output channels. Default: 1
#         bias (bool, optional): If ``True``, adds a learnable bias to the
#             output. Default: ``True``
#

conv1 = nn.Conv1d(3, 2, 2, 1)  # in, out, k_size, stride

a = torch.ones(1, 5, 3)  # b_size, n, 3  # 点云格式
a = a.permute(0, 2, 1)
# a = torch.ones(3)
print('a:\n', a)

b = conv1(a)
print('b:\n', b)
print(b.shape)  # b_size, ch, length


你可能感兴趣的:(深度学习,卷积神经网络,深度学习)