- 模型压缩与优化技术——神经架构搜索(Neural Architecture Search, NAS)
DuHz
轻量化模型机器学习计算机视觉人工智能神经网络深度学习数据挖掘语音识别
模型压缩与优化技术中的神经架构搜索(NeuralArchitectureSearch,NAS)技术1.引言在深度学习领域,神经网络的架构设计对模型的性能至关重要。传统的手动设计网络架构的过程费时费力,且通常依赖于经验和直觉。为了提升效率与效果,神经架构搜索(NeuralArchitectureSearch,NAS)作为一种自动化的方法,能够通过算法寻找和优化最佳的神经网络架构。NAS可以在图像识别
- PID控制的优势与LabVIEW应用
LabVIEW开发
LabVIEW知识labview算法
PID控制(比例-积分-微分控制)已在工业控制领域得到广泛应用,尤其在实时控制和自动化系统中,其核心优点是简单、稳定且高效。尽管许多现代控制方法(如自适应控制、模型预测控制等)逐渐崭露头角,PID控制依然保持着无可替代的地位。以下是PID控制长期无法被取代的根本原因,并结合LabVIEW在PID控制中的应用进行详细探讨。1.PID控制长期无法取代的原因1.1控制目标的简单性与稳定性PID控制能够在
- 【AI日志分析】基于机器学习的异常检测:告别传统规则的智能进阶
人工智能机器学习深度学习
摘要随着系统规模的扩大和复杂性增加,传统基于规则的日志分析方法难以识别隐藏的复杂异常模式。本文将介绍基于机器学习的日志异常检测技术,包括模型选择、特征工程及实现步骤。通过具体的代码示例与图表,展示如何高效检测异常日志,并提供应用场景与优化策略。引言日志是系统运行状态的关键数据来源,但面对海量日志数据,传统规则式分析显得力不从心。机器学习能够根据日志的历史数据和行为模式,通过训练模型检测异常情况,不
- 大模型密度定律:AI代码生成器将迎来爆发式增长?
前端
近年来,人工智能(AI)技术飞速发展,尤其是在代码生成领域,涌现出许多强大的AI代码生成器。清华大学刘知远团队近期提出的“大模型密度定律”,为我们理解AI技术的发展速度提供了新的视角,也预示着AI代码生成技术的未来发展趋势。该定律指出,模型能力密度每3.3个月翻倍,这将如何改变我们对AI发展的认知,并对AI代码生成器产生怎样的影响呢?让我们深入探讨。大模型密度定律:能力密度与指数级增长“大模型密度
- 2024实力进阶:百度智能云千帆AppBuilder年度盘点
2024,AI浪潮奔涌,百度智能云千帆AppBuilder持续升级,以AI原生之力,革新企业级大模型应用开发范式,重塑行业生态!企业级RAG实现重大突破,支持无限存储,高并发秒速响应,且能实现随业务弹性扩缩容。此外RAG支持一键联网,无缝连接百度搜索、文库、百科等全网最新资源,资讯获取实时更新,全面且精准。多语言RAG为企业开拓全球市场保驾护航;强图表解析功能让报告与报表分析更精准高效。企业级Ag
- 字节启动AGI长期研究计划,代号Seed Edge
量子位字节跳动
1月23日,据媒体报道,字节豆包大模型团队已在内部组建AGI长期研究团队,代号“SeedEdge”,鼓励项目成员探索更长周期、具有不确定性和大胆的AGI研究课题。接近字节的知情人士透露,SeedEdge的目标是探索AGI的新方法,代号名中Seed是豆包大模型团队名称,Edge代表最前沿的AGI探索。SeedEdge鼓励跨模态、跨团队合作,为项目成员提供宽松的研究环境,实行采用更长周期的考核方式,以
- 理论五、大模型-Prompt
伯牙碎琴
大模型prompt
一、prompt是什么在大型语言模型集成中,"prompt"是指您向模型提供的输入文本或指令,以引导模型生成特定类型的响应。这个prompt可以是一个问题、一段描述、一个任务说明,甚至是一部分对话历史记录等。通过设计和优化prompt,您可以引导模型生成符合预期的回复或完成特定的任务。在集成大型语言模型时,良好设计的prompt可以帮助模型更准确地理解您的意图,并生成更符合预期的结果。因此,对于不
- 反向代理模块1
xianwu543
mysql数据库pythondjangoc++
1概念1.1反向代理概念反向代理是指以代理服务器来接收客户端的请求,然后将请求转发给内部网络上的服务器,将从服务器上得到的结果返回给客户端,此时代理服务器对外表现为一个反向代理服务器。对于客户端来说,反向代理就相当于目标服务器,只需要将反向代理当作目标服务器一样发送请求就可以了,并且客户端不需要进行任何设置。1.2特点反向代理是代理服务器,为服务器收发请求,使真实服务器对客户端不可见。原文链接:h
- 成为 Web3 开发者:why and how
作者丨Pignard首先介绍一下什么是Web3。2014年,以太坊联合创始人GavinWood首次提出“Web3”的概念,给互联网需要过多信任的问题提供了一种解决方案。不可否认,中心化网络已经帮助数十亿人融入了互联网,并在其上创建了稳定、可靠的基础设施。但与此同时,少数中心化巨头几乎垄断了互联网,甚至可以为所欲为。而Web3通过区块链、加密货币和NFT将权力以所有权的形式归还用户。Web3如今已成
- Go微服务十二 Go使用nacos 注册服务,服务发现
太阳上的雨天
微服务go微服务nacos
创作不易感谢支持。一条主写Go和PHP的小菜鸟。平常有时间喜欢自己写点东西,如有不对的地方,欢迎大佬指点。个人博客:太阳上的雨天地址:http://blog.caixiaoxin.cn善于分享,希望有助他人.非常感谢各位大佬的关注和支持Go使用阿里nacos管理服务注册和发现,思路Demo连接nacosfuncInitNacos()*nacosRF{//return&nacosRF{}d:=&na
- centos安装python3
XMYX-0
centoslinuxpython
目录介绍安装依赖下载python安装包安装python建立软连接python3加入PATH变量验证python3安装的一些库psutil模块安装源码安装psutilpip安装windows上安装IPy的安装dns模块安装疑难杂症解决python上下键无法使用的问题安装pip以及setuptools安装pip测试:其他安装node以及pm2介绍Python是一种广泛应用的编程语言,原由荷兰国家数学与
- 300行ABAP代码实现一个最简单的区块链原型
在多模态模型的架构上,ChatGPT的绘图能力主要依赖以下几个核心组件:跨模态编码器(Cross-ModalEncoder):跨模态编码器的作用是将文本和图像的特征进行对齐。GPT可以将用户输入的文本描述转换为文本特征表示,然后利用跨模态编码器将这些特征映射到图像特征空间。这种方式确保模型能够理解描述性语言中不同细节是如何与图像特征对应的。
- SGLang安装教程,部署你的大模型,性能比vllm好,实现张量并行,数据并行,加快推理速度,亲测效果好。
张登杰踩
人工智能结对编程python
目前大模型部署工具主要是vllm,最近出现了SGLang,很多新开源大模型都支持SGLang的部署推理,例如deepseek-R1,Qwen2.5,Mistral,GLM-4,MiniCPM3,InternLM2,Llama3.2等。代码:GitHub-sgl-project/sglang:SGLangisafastservingframeworkforlargelanguagemodelsand
- c++瓷砖
橙子亿
c++开发语言
今天的题目叫“瓷砖”,是“DFS深度优先搜索递归”一类的。题目描述在一个w×h的矩形广场上,每一块1x1的地面都铺设了红色或黑色的瓷砖。小谢同学站在某一块黑色的瓷砖上,他可以从此处出发,移动到上、下、左、右四个相邻的且是黑色的瓷砖上。现在他想知道,通过重复上述移动所能经过的黑色瓷砖数。输入第一行为两个数h和w,2≤w,h≤50,之间有一个空格隔开。以下为一个w行h列的二维字符矩阵,每个字符为“.”
- 大模型密度定律:AI代码生成器将迎来爆发式增长?
前端
近年来,人工智能(AI)技术飞速发展,尤其是在代码生成领域,涌现出许多强大的AI代码生成器。清华大学刘知远团队近期提出的“大模型密度定律”,为我们理解AI技术的发展速度提供了新的视角,也预示着AI代码生成技术的未来发展趋势。该定律指出,模型能力密度每3.3个月翻倍,这将如何改变我们对AI发展的认知,并对AI代码生成器产生怎样的影响呢?让我们深入探讨。大模型密度定律:能力密度与指数级增长“大模型密度
- 关于大一上的总结
Rinai_R
对过去的总结与反思学习经验分享
大一上总结前言源于学长们都喜欢写总结,今晚也正好听见一首有点触动心灵的歌,深有感慨,故来此写下这篇总结正文1.暑假前的准备暑假之前姑且还是学习了基本的C语法,大概是到了结构体的地方,进度很慢,主要是我在家确实很懈怠,而且确实也有其他不少的事情。2.军训之后到10月22日我在学校的代码之旅是在军训之后开始的,军训完本来想在寝室学习编程的,却发现室友都在go/瓦/王者启动…还是有点吵,于是转战到了图书
- 深度求索DeepSeek V2.5-1210发布:强大的AI代码生成器,开启联网搜索新纪元
前端
深度求索团队近日发布了AI代码生成器DeepSeekV2.5系列的最终版本——DeepSeekV2.5-1210,并正式上线了备受期待的联网搜索功能。这标志着DeepSeekV2系列发展历程的一个重要里程碑,也为AI大模型在代码生成和信息检索领域树立了新的标杆。此次更新不仅带来了模型能力的全面提升,更重要的是开启了AI与实时信息互联的新篇章。DeepSeekV2.5-1210的核心改进:Post-
- 本地大模型服务 Ollama:从安装到使用
aabond
githubpythonsoftwarepythongithubLLMqwenollamallama3大模型
文章目录前言一、下载安装1.1官网安装1.2压缩包安装1.3docker安装二、命令行使用2.1常用命令2.2模型列表2.3使用三、Open-WebUI3.1安装3.2修改语言3.3使用参考前言Ollama是专为在本地机器上便捷部署和运行大型语言模型(LLM)而设计的开源框架,它有如下几个特点:简单的部署过程:Ollama提供跨平台的安装包,并提供docker方式部署。跨平台支持:Ollama可以
- QAT与PTQ模型量化方法的区别
old_power
计算机视觉模型量化深度学习计算机视觉
QAT(QuantizationAwareTraining)和PTQ(PostTrainingQuantization)是两种常见的模型量化方法,用于减少深度学习模型的计算和存储开销,同时尽量保持模型的性能。1.QAT(QuantizationAwareTraining)定义:QAT是在模型训练过程中引入量化操作,使模型在训练时就能感知到量化带来的影响,从而更好地适应量化后的精度损失。流程:在训练
- linux虚拟机连接不上Xshell
远方 hi
phpapache开发语言
本文介绍了在尝试通过Xshell连接Linux虚拟机时遇到的问题及解决方案。错误表现为无法连接到指定IP的SSH服务。常规检查包括确认网络连通性、防火墙状态和SSH服务状态。作者发现问题根源在于虚拟机的网络配置错误,子网配置与分配的IP地址不匹配。修复网络配置后,成功解决了连接问题。Type`help'tolearnhowtouseXshellprompt.[c:\~]$Connectingto1
- 【github | SSH key】配置ssh key过程 & trouble shooting
只要你一直跑
sshgithubgit
本文记录配置githubsshkey的步骤以及遇到过的问题,内容包括:生成密钥检查密钥配置到sshagent配置到github检查连接下载代码troubleshooting大体上讲参照官方文档就能配好,但是如果自己是第二次给别的github账号配可能会遇到别的问题,所以如果是第一次配可以直接参考官方文档(见文末)1.生成公钥和私钥去到指定目录(~/.ssh)cd~/.ssh创建密钥$ssh-key
- 主流IDE大横评:总有一款适合你
陳沉辰陈
资源分享ide
写给每一位在IDE选择上犯难的开发者:新手和老鸟都值得一看!还记得我刚开始学编程时,面对众多IDE的选择真是头疼不已。VSCode?IDEA?Eclipse?PyCharm?选择太多反而让人无从下手。如果你也有同样的困扰,那么这篇文章正是为你准备的!咱们一起来看看这些"神兵利器"各有什么独到之处吧!文中只列举了部分主流的IDE,一定会有疏漏。此外,科技发展日新月异,更多更好的编译器正在路上,欢迎补
- Python Turtle艺术绘画赏析与编程
自由徜徉碧海蓝天
python开发语言爬虫编程
PythonTurtle是一个强大的绘图库,通过简单的命令和指令,可以在屏幕上绘制出各种图形和艺术作品。本文将介绍PythonTurtle艺术绘画的一些技巧和示例代码,帮助您了解如何使用PythonTurtle库来创作独特的艺术作品。在开始之前,确保您已经安装了Python和Turtle库。如果您还没有安装,可以通过Python的官方网站下载并安装Python,然后在命令行中使用以下命令安装Tur
- Keras、TensorFlow、PyTorch框架对比及服务器配置揭秘
小深ai硬件分享
人工智能深度学习服务器
深度学习框架:开启智能大门的钥匙在数字化浪潮中,深度学习如明星照亮众多领域。从智能安防的人脸识别,到医疗图像分析、电商商品推荐、智能语音助手等,其身影无处不在,改变着生活与工作方式。在深度学习领域,Keras、TensorFlow和PyTorch是主流框架,能助开发者构建强大智能模型。但这些框架要充分发挥作用,离不开合适的服务器配置,就像魔法师需要魔法棒和魔力,下面我们就来看看这些具体的框架吧:框
- python+ollama本地大模型批量识别PDF,总结摘要以及关键词并输出EXCEL。
月野难浔丶
pythonpdf开发语言
现在市场上有很多PDF文件的识别,转化,等等。有些业务可能需要总结摘要和关键词等等一系列的操作。然而随着AI的兴起,本地大模型的部署,这些成为一种很方便的方法,接下来我将为各位介绍我所使用的方法。本篇文章旨在自动化处理PDF文档,提取并清理文本数据,然后使用一种大型模型生成摘要和关键词。最后,处理结果会被整理并输出到Excel文件中,便于后续分析和查看。人工智能(AI)是一种模拟人类智能的科技,它
- 深度学习|表示学习|卷积神经网络|局部链接是什么?|06
漂亮_大男孩
表示学习深度学习学习cnn
如是我闻:局部连接(LocalConnectivity),是卷积神经网络(CNN)中的一个关键特性。什么是局部连接(LocalConnectivity)?局部连接指的是:在卷积操作中,每个神经元(或输出单元)只与输入数据的一个局部区域相关联,而不是与整个输入数据相连。换句话说:全连接网络(FullyConnectedLayer)中,每个神经元会与上一层所有的神经元相连。卷积网络(Convoluti
- @RabbitListener或@RabbitHandler使用出现死循环
Youmans_station
javarabbitmq
异常1问题:为什么会找不到消费实现?@RabbitListener或@RabbitHandler配置出错很大原因是取决于content_type的配置和方法的形参。如果通过客户端放入队列中有个content_type为空的的消息,@RabbitListener只有形参为String的Handler,是无法对应上消费实现的。@RabbitHandler没有使用可选参数isDefault消费者找不到任
- debian php安装,如何在Debian 9上安装PHP
第四根肋骨
debianphp安装
装有PHP7.0版的Debian9即将终止支持,并且不再收到安全更新。在本教程中,我们将引导您完成在Debian9服务器上安装PHP7.2的步骤。我们还将向您展示如何配置Apache和Nginx以运行PHP。先决条件在Debian9上安装PHP7.2以下步骤描述了如何使用OndrejSury存储库安装PHP7.2。首先,更新apt软件包列表并安装必要的依赖项,以通过HTTPS添加新存储库:sudo
- Hive(11):Transactional Tables事务表
不死鸟.亚历山大.狼崽子
hivehivehadoop数据仓库
1Hive事务背景知识Hive本身从设计之初时,就是不支持事务的,因为Hive的核心目标是将已经存在的结构化数据文件映射成为表,然后提供基于表的SQL分析处理,是一款面向分析的工具。且映射的数据通常存储于HDFS上,而HDFS是不支持随机修改文件数据的。这个定位就意味着在早期的Hive的SQL语法中是没有update,delete操作的,也就没有所谓的事务支持了,因为都是select查询分析操作。
- 高斯混合模型(GMM):用“高斯家族”描绘数据的“模样”
ningaiiii
机器学习与深度学习机器学习人工智能
高斯混合模型(GMM):用“高斯家族”描绘数据的“模样”1.引言高斯混合模型(GaussianMixtureModel,GMM)是一种基于概率密度的生成式模型。它的核心思想是用多个“高斯分布”(即正态分布)的加权组合来描述数据的分布。GMM就像是一个“画家”,用不同的“高斯画笔”描绘出数据的“模样”,特别适合处理复杂的分类任务。2.算法原理2.1模型结构GMM的核心组成包括:混合权重:每个高斯分量
- Js函数返回值
_wy_
jsreturn
一、返回控制与函数结果,语法为:return 表达式;作用: 结束函数执行,返回调用函数,而且把表达式的值作为函数的结果 二、返回控制语法为:return;作用: 结束函数执行,返回调用函数,而且把undefined作为函数的结果 在大多数情况下,为事件处理函数返回false,可以防止默认的事件行为.例如,默认情况下点击一个<a>元素,页面会跳转到该元素href属性
- MySQL 的 char 与 varchar
bylijinnan
mysql
今天发现,create table 时,MySQL 4.1有时会把 char 自动转换成 varchar
测试举例:
CREATE TABLE `varcharLessThan4` (
`lastName` varchar(3)
) ;
mysql> desc varcharLessThan4;
+----------+---------+------+-
- Quartz——TriggerListener和JobListener
eksliang
TriggerListenerJobListenerquartz
转载请出自出处:http://eksliang.iteye.com/blog/2208624 一.概述
listener是一个监听器对象,用于监听scheduler中发生的事件,然后执行相应的操作;你可能已经猜到了,TriggerListeners接受与trigger相关的事件,JobListeners接受与jobs相关的事件。
二.JobListener监听器
j
- oracle层次查询
18289753290
oracle;层次查询;树查询
.oracle层次查询(connect by)
oracle的emp表中包含了一列mgr指出谁是雇员的经理,由于经理也是雇员,所以经理的信息也存储在emp表中。这样emp表就是一个自引用表,表中的mgr列是一个自引用列,它指向emp表中的empno列,mgr表示一个员工的管理者,
select empno,mgr,ename,sal from e
- 通过反射把map中的属性赋值到实体类bean对象中
酷的飞上天空
javaee泛型类型转换
使用过struts2后感觉最方便的就是这个框架能自动把表单的参数赋值到action里面的对象中
但现在主要使用Spring框架的MVC,虽然也有@ModelAttribute可以使用但是明显感觉不方便。
好吧,那就自己再造一个轮子吧。
原理都知道,就是利用反射进行字段的赋值,下面贴代码
主要类如下:
import java.lang.reflect.Field;
imp
- SAP HANA数据存储:传统硬盘的瓶颈问题
蓝儿唯美
HANA
SAPHANA平台有各种各样的应用场景,这也意味着客户的实施方法有许多种选择,关键是如何挑选最适合他们需求的实施方案。
在 《Implementing SAP HANA》这本书中,介绍了SAP平台在现实场景中的运作原理,并给出了实施建议和成功案例供参考。本系列文章节选自《Implementing SAP HANA》,介绍了行存储和列存储的各自特点,以及SAP HANA的数据存储方式如何提升空间压
- Java Socket 多线程实现文件传输
随便小屋
javasocket
高级操作系统作业,让用Socket实现文件传输,有些代码也是在网上找的,写的不好,如果大家能用就用上。
客户端类:
package edu.logic.client;
import java.io.BufferedInputStream;
import java.io.Buffered
- java初学者路径
aijuans
java
学习Java有没有什么捷径?要想学好Java,首先要知道Java的大致分类。自从Sun推出Java以来,就力图使之无所不包,所以Java发展到现在,按应用来分主要分为三大块:J2SE,J2ME和J2EE,这也就是Sun ONE(Open Net Environment)体系。J2SE就是Java2的标准版,主要用于桌面应用软件的编程;J2ME主要应用于嵌入是系统开发,如手机和PDA的编程;J2EE
- APP推广
aoyouzi
APP推广
一,免费篇
1,APP推荐类网站自主推荐
最美应用、酷安网、DEMO8、木蚂蚁发现频道等,如果产品独特新颖,还能获取最美应用的评测推荐。PS:推荐简单。只要产品有趣好玩,用户会自主分享传播。例如足迹APP在最美应用推荐一次,几天用户暴增将服务器击垮。
2,各大应用商店首发合作
老实盯着排期,多给应用市场官方负责人献殷勤。
3,论坛贴吧推广
百度知道,百度贴吧,猫扑论坛,天涯社区,豆瓣(
- JSP转发与重定向
百合不是茶
jspservletJava Webjsp转发
在servlet和jsp中我们经常需要请求,这时就需要用到转发和重定向;
转发包括;forward和include
例子;forwrad转发; 将请求装法给reg.html页面
关键代码;
req.getRequestDispatcher("reg.html
- web.xml之jsp-config
bijian1013
javaweb.xmlservletjsp-config
1.作用:主要用于设定JSP页面的相关配置。
2.常见定义:
<jsp-config>
<taglib>
<taglib-uri>URI(定义TLD文件的URI,JSP页面的tablib命令可以经由此URI获取到TLD文件)</tablib-uri>
<taglib-location>
TLD文件所在的位置
- JSF2.2 ViewScoped Using CDI
sunjing
CDIJSF 2.2ViewScoped
JSF 2.0 introduced annotation @ViewScoped; A bean annotated with this scope maintained its state as long as the user stays on the same view(reloads or navigation - no intervening views). One problem w
- 【分布式数据一致性二】Zookeeper数据读写一致性
bit1129
zookeeper
很多文档说Zookeeper是强一致性保证,事实不然。关于一致性模型请参考http://bit1129.iteye.com/blog/2155336
Zookeeper的数据同步协议
Zookeeper采用称为Quorum Based Protocol的数据同步协议。假如Zookeeper集群有N台Zookeeper服务器(N通常取奇数,3台能够满足数据可靠性同时
- Java开发笔记
白糖_
java开发
1、Map<key,value>的remove方法只能识别相同类型的key值
Map<Integer,String> map = new HashMap<Integer,String>();
map.put(1,"a");
map.put(2,"b");
map.put(3,"c"
- 图片黑色阴影
bozch
图片
.event{ padding:0; width:460px; min-width: 460px; border:0px solid #e4e4e4; height: 350px; min-heig
- 编程之美-饮料供货-动态规划
bylijinnan
动态规划
import java.util.Arrays;
import java.util.Random;
public class BeverageSupply {
/**
* 编程之美 饮料供货
* 设Opt(V’,i)表示从i到n-1种饮料中,总容量为V’的方案中,满意度之和的最大值。
* 那么递归式就应该是:Opt(V’,i)=max{ k * Hi+Op
- ajax大参数(大数据)提交性能分析
chenbowen00
WebAjax框架浏览器prototype
近期在项目中发现如下一个问题
项目中有个提交现场事件的功能,该功能主要是在web客户端保存现场数据(主要有截屏,终端日志等信息)然后提交到服务器上方便我们分析定位问题。客户在使用该功能的过程中反应点击提交后反应很慢,大概要等10到20秒的时间浏览器才能操作,期间页面不响应事件。
根据客户描述分析了下的代码流程,很简单,主要通过OCX控件截屏,在将前端的日志等文件使用OCX控件打包,在将之转换为
- [宇宙与天文]在太空采矿,在太空建造
comsci
我们在太空进行工业活动...但是不太可能把太空工业产品又运回到地面上进行加工,而一般是在哪里开采,就在哪里加工,太空的微重力环境,可能会使我们的工业产品的制造尺度非常巨大....
地球上制造的最大工业机器是超级油轮和航空母舰,再大些就会遇到困难了,但是在空间船坞中,制造的最大工业机器,可能就没
- ORACLE中CONSTRAINT的四对属性
daizj
oracleCONSTRAINT
ORACLE中CONSTRAINT的四对属性
summary:在data migrate时,某些表的约束总是困扰着我们,让我们的migratet举步维艰,如何利用约束本身的属性来处理这些问题呢?本文详细介绍了约束的四对属性: Deferrable/not deferrable, Deferred/immediate, enalbe/disable, validate/novalidate,以及如
- Gradle入门教程
dengkane
gradle
一、寻找gradle的历程
一开始的时候,我们只有一个工程,所有要用到的jar包都放到工程目录下面,时间长了,工程越来越大,使用到的jar包也越来越多,难以理解jar之间的依赖关系。再后来我们把旧的工程拆分到不同的工程里,靠ide来管理工程之间的依赖关系,各工程下的jar包依赖是杂乱的。一段时间后,我们发现用ide来管理项程很不方便,比如不方便脱离ide自动构建,于是我们写自己的ant脚本。再后
- C语言简单循环示例
dcj3sjt126com
c
# include <stdio.h>
int main(void)
{
int i;
int count = 0;
int sum = 0;
float avg;
for (i=1; i<=100; i++)
{
if (i%2==0)
{
count++;
sum += i;
}
}
avg
- presentModalViewController 的动画效果
dcj3sjt126com
controller
系统自带(四种效果):
presentModalViewController模态的动画效果设置:
[cpp]
view plain
copy
UIViewController *detailViewController = [[UIViewController al
- java 二分查找
shuizhaosi888
二分查找java二分查找
需求:在排好顺序的一串数字中,找到数字T
一般解法:从左到右扫描数据,其运行花费线性时间O(N)。然而这个算法并没有用到该表已经排序的事实。
/**
*
* @param array
* 顺序数组
* @param t
* 要查找对象
* @return
*/
public stati
- Spring Security(07)——缓存UserDetails
234390216
ehcache缓存Spring Security
Spring Security提供了一个实现了可以缓存UserDetails的UserDetailsService实现类,CachingUserDetailsService。该类的构造接收一个用于真正加载UserDetails的UserDetailsService实现类。当需要加载UserDetails时,其首先会从缓存中获取,如果缓存中没
- Dozer 深层次复制
jayluns
VOmavenpo
最近在做项目上遇到了一些小问题,因为架构在做设计的时候web前段展示用到了vo层,而在后台进行与数据库层操作的时候用到的是Po层。这样在业务层返回vo到控制层,每一次都需要从po-->转化到vo层,用到BeanUtils.copyProperties(source, target)只能复制简单的属性,因为实体类都配置了hibernate那些关联关系,所以它满足不了现在的需求,但后发现还有个很
- CSS规范整理(摘自懒人图库)
a409435341
htmlUIcss浏览器
刚没事闲着在网上瞎逛,找了一篇CSS规范整理,粗略看了一下后还蛮有一定的道理,并自问是否有这样的规范,这也是初入前端开发的人一个很好的规范吧。
一、文件规范
1、文件均归档至约定的目录中。
具体要求通过豆瓣的CSS规范进行讲解:
所有的CSS分为两大类:通用类和业务类。通用的CSS文件,放在如下目录中:
基本样式库 /css/core
- C++动态链接库创建与使用
你不认识的休道人
C++dll
一、创建动态链接库
1.新建工程test中选择”MFC [dll]”dll类型选择第二项"Regular DLL With MFC shared linked",完成
2.在test.h中添加
extern “C” 返回类型 _declspec(dllexport)函数名(参数列表);
3.在test.cpp中最后写
extern “C” 返回类型 _decls
- Android代码混淆之ProGuard
rensanning
ProGuard
Android应用的Java代码,通过反编译apk文件(dex2jar、apktool)很容易得到源代码,所以在release版本的apk中一定要混淆一下一些关键的Java源码。
ProGuard是一个开源的Java代码混淆器(obfuscation)。ADT r8开始它被默认集成到了Android SDK中。
官网:
http://proguard.sourceforge.net/
- 程序员在编程中遇到的奇葩弱智问题
tomcat_oracle
jquery编程ide
现在收集一下:
排名不分先后,按照发言顺序来的。
1、Jquery插件一个通用函数一直报错,尤其是很明显是存在的函数,很有可能就是你没有引入jquery。。。或者版本不对
2、调试半天没变化:不在同一个文件中调试。这个很可怕,我们很多时候会备份好几个项目,改完发现改错了。有个群友说的好: 在汤匙
- 解决maven-dependency-plugin (goals "copy-dependencies","unpack") is not supported
xp9802
dependency
解决办法:在plugins之前添加如下pluginManagement,二者前后顺序如下:
[html]
view plain
copy
<build>
<pluginManagement