- 基于大模型的Text2SQL微调的实战教程(二)
herosunly
AIGCText2SQL微调实战教程
大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。 本文主要介绍了基于大模型的Text2SQL微调的实战教程(二),希望对学习大语言模型的
- 开启AI开发新时代——全解析Dify开源LLM应用开发平台
gs80140
AI人工智能开源
开启AI开发新时代——全解析Dify开源LLM应用开发平台在人工智能迅速发展的今天,如何快速将创意转化为高效可用的应用成为开发者亟待解决的问题。Dify作为一款开源的LLM应用开发平台,以其直观的界面和强大的功能组合(包括agenticAI工作流、RAG流水线、agent能力、模型管理、可观测性等),让从原型设计到生产部署的过程变得简单而高效。本文将带你全面了解Dify的优势、核心功能、快速上手指
- 详细介绍ListView_DeleteItem
程工助力英语中国话
VisualC++2017从入门到精通windowswin32
书籍:《VisualC++2017从入门到精通》的2.3.8Win32控件编程环境:visualstudio2022内容:【例2.27】支持按Delete键删除某行的列表视图控件说明:以下内容大部分来自腾讯元宝。以下是关于**ListView_DeleteItem**函数的详细介绍,结合微软官方网页及搜索资料的核心内容:1.定义与作用ListView_DeleteItem是WindowsAPI中用
- 计算机视觉算法实战——茶园害虫识别(主页有源码)
喵了个AI
计算机视觉实战项目计算机视觉算法人工智能
✨个人主页欢迎您的访问✨期待您的三连✨✨个人主页欢迎您的访问✨期待您的三连✨✨个人主页欢迎您的访问✨期待您的三连✨1.引言茶园害虫识别是农业领域中的一个重要研究方向,旨在通过计算机视觉技术自动识别茶园中的害虫种类,从而帮助农民及时采取防治措施,减少经济损失。随着深度学习技术的快速发展,茶园害虫识别的准确性和效率得到了显著提升,为智慧农业提供了强有力的技术支持。2.当前相关算法在茶园害虫识别领域,常
- Windows11 上开发iOS是否可行呢?有什么解决方案呢
知识大胖
SwiftUI源码大全先进生产力工具大全swiftuixcodeswiftios
许多iOS开发人员没有Mac。这使得在Windows上进行iOS开发变得困难。很长一段时间以来,iOS开发都无法在任何运行macOS的设备上进行。许多第三方跨平台解决方案,例如PhoneGap或Titanium,都承诺提供卓越的性能和其他开发环境,但并未兑现。您不能直接使用开箱即用的iOSPC来开发iOS应用程序,但您可以使用不同的技术在Windows上构建、部署、调试和测试它们。微软和其他公司正
- 建议收藏!华为HCIE考试内容全攻略,助你备考一臂之力!
新盟IT教育
网络网络工程师网络工程师培训HCIE培训华为认证HCIE考试
在ICT领域,华为HCIE认证的含金量不言而喻,它是众多技术从业者梦寐以求的目标。然而,想要顺利通过华为HCIE考试,深入了解考试内容是关键。今天,就来和大家详细聊聊华为HCIE考试内容,为大家的备考之路提供一些方向。新盟教育专注华为认证培训十余年为你提供认证一线资讯!华为HCIE有多个领域方向,如数据通信、云计算、安全、人工智能等,不同方向的考试内容各有侧重,但都对考生的技术能力和综合素养提出了
- 整理:开启新征程!四篇文章助力 AI,告别 “3D理解困难户”
mslion
人工智能3d大语言模型计算机视觉目标识别
近年来,人工智能的发展让大语言模型(MLLM)变得越来越强大,它们可以理解和处理文字、图片、视频等多种信息,在很多领域都有很好的应用。然而,当这些模型需要理解3D(立体)场景时,仍然面临一些困难。目前的MLLM主要是用2D图片训练出来的,也就是说,它们更擅长识别平面的信息,比如照片中的人和物体。但是,现实世界是三维的(3D),仅靠2D图片训练的模型很难准确理解物体的立体关系。例如,如果只给一个普通
- RAG(检索增强生成)系统实践与调优
python_知世
android金融自然语言处理大模型技术人工智能RAG大模型
在人工智能领域,检索增强生成(RetrievalAugmentedGeneration,RAG)是一种结合信息检索和生成式人工智能的技术,它通过从外部数据源中检索相关信息,来辅助大语言模型(LargeLanguageModel,LLM)生成更为准确、上下文相关的答案。1什么是RAG检索增强生成(RetrievalAugmentedGeneration,RAG)是一种结合信息检索和生成式人工智能的技
- 不同用户群体设计的Manus试用申请理由模板
xinxiyinhe
人工智能人工智能
注:仅供参考。以下是为不同用户群体设计的Manus试用申请理由模板,结合其核心功能与官方审核偏好撰写,可根据自身需求调整使用:模板1:学术研究场景申请理由:我目前从事人工智能与产业经济交叉领域的博士后研究,亟需通过AI技术快速处理大量非结构化数据(如政策文件、企业年报、行业研报)。Manus的「多智能体调度」与「跨平台工具调用」功能能显著提升研究效率,例如:自动化筛选并分析1000+份上市公司ES
- DeepSeek对于普通打工人来说有什么帮助呢?
人工智能
在当今快速变化的社会中,普通打工人面临着越来越多的挑战:职场竞争加剧、技能更新换代加快、工作与生活的平衡难以掌控等。在这样的背景下,如何提升自身竞争力、找到适合自己的职业发展路径,成为了每个打工人都需要思考的问题。而DeepSeek,作为一款基于人工智能和大数据分析的职业发展工具,正在为普通打工人提供全新的解决方案。本文将从多个角度探讨DeepSeek对于普通打工人的帮助,分析它如何通过职业规划、
- 训练大模型LLM选择哪种开发语言最好
大0马浓
人工智能训练python
训练大型语言模型(LLM)时,选择合适的编程语言主要取决于效率、生态支持、开发便利性以及特定需求(如性能优化或硬件适配)。以下是常见语言的分析和推荐:---1.Python(首选语言)优势:-生态系统丰富:主流深度学习框架(PyTorch、TensorFlow、JAX)均以Python为主要接口,提供完整的工具链(数据处理、模型训练、评估部署)。-开发效率高:语法简洁,适合快速实验和原型开发,社区
- 豆包AI:打破智能边界,开启“人人可编程”的AI普惠时代
Herbig
AI人工智能
在人工智能技术狂飙突进的2024年,全球AI工具用户已突破12亿,但企业AI落地率仍不足35%——高昂的开发成本、复杂的技术门槛与碎片化的场景需求,如同三重枷锁禁锢着智能革命的红利释放。当大多数AI平台还在比拼模型参数时,豆包AI以“零代码交互+多模态引擎+垂直场景精调”的创新架构,正在重塑人机协作的范式。这款由字节跳动火山引擎团队打造的智能平台,不仅让AI开发效率提升400%,更在医疗、教育、工
- 动手深度学习笔记(二十九)5.5. 读写文件
落花逐流水
pytorch实践pytorchpytorch
动手深度学习笔记(二十九)5.5.读写文件5.深度学习计算5.5.读写文件5.5.1.加载和保存张量5.5.2.加载和保存模型参数5.5.3.小结5.5.4.练习5.深度学习计算5.5.读写文件到目前为止,我们讨论了如何处理数据,以及如何构建、训练和测试深度学习模型。然而,有时我们希望保存训练的模型,以备将来在各种环境中使用(比如在部署中进行预测)。此外,当运行一个耗时较长的训练过程时,最佳的做法
- 【深度学习】从全连接层到卷积
熙曦Sakura
深度学习深度学习人工智能
从全连接层到卷积我们之前讨论的多层感知机十分适合处理表格数据,其中行对应样本,列对应特征。对于表格数据,我们寻找的模式可能涉及特征之间的交互,但是我们不能预先假设任何与特征交互相关的先验结构。此时,多层感知机可能是最好的选择,然而对于高维感知数据,这种缺少结构的网络可能会变得不实用。例如,在之前猫狗分类的例子中:假设我们有一个足够充分的照片数据集,数据集中是拥有标注的照片,每张照片具有百万级像素,
- 【深度学习】微积分
熙曦Sakura
深度学习深度学习人工智能
微积分在2500年前,古希腊人把一个多边形分成三角形,并把它们的面积相加,才找到计算多边形面积的方法。为了求出曲线形状(比如圆)的面积,古希腊人在这样的形状上刻内接多边形。如图2.4.1所示,内接多边形的等长边越多,就越接近圆。这个过程也被称为逼近法(methodofexhaustion)。事实上,逼近法就是积分(integralcalculus)的起源。2000多年后,微积分的另一支,微分(di
- iOS 18 系统功能解析目录
蓝鲸忘了海
IOS1-18系统功能解析ioscocoamacos
iOS18系统功能解析目录iOS18系统功能解析引言第一部分:iOS18系统架构全解析1.1全新系统设计理念1.2核心架构与硬件协同1.3安全架构与隐私保护1.4跨平台生态协同第二部分:用户界面与交互体验的革新2.1全新视觉设计2.2自定义UI与多任务切换2.3通知中心与交互体验2.4动态交互动画与手势识别第三部分:人工智能与机器学习的深度整合3.1新一代智能助手3.2CoreML与机器学习框架进
- vscode更新后: 适用于 Linux 的 Windows 子系统必须更新到最新版本才能继续。可通过运行 “wsl.exe --update” 进行更新
写完这行代码打球去
vscodelinuxwindows
WSL介绍:Windows开发者的Linux利器WSL是什么?WSL(WindowsSubsystemforLinux)是微软为开发者提供的一项重要功能,它允许在Windows系统上原生运行Linux二进制可执行文件。简单来说,WSL让你能够在Windows上使用真正的Linux环境,而不需要传统虚拟机的额外开销。WSL有两个主要版本:WSL1:使用翻译层将Linux系统调用转换为Windows系
- 人工智能AI通用分级标准方法
魔王阿卡纳兹
IT杂谈人工智能通用分级分类标准
人工智能(AI)的通用分级标准在近年来得到了广泛关注和研究,不同的机构和组织提出了多种分级框架,以帮助理解和评估AI的发展水平。以下是对人工智能通用分级标准的详细分析:1.OpenAI的五级分级标准OpenAI于2024年7月发布了通用人工智能(AGI)的五级分级标准,旨在追踪大型语言模型在AGI方面的进展。具体分级如下:第一级:聊天机器人具备语言对话能力的人工智能,如ChatGPT,能够进行基本
- LeNet-5卷积神经网络详解
LChuck
深度学习人工智能神经网络深度学习数据结构计算机视觉AIGC
LeNet-5卷积神经网络详解1.历史背景LeNet-5是由YannLeCun等人在1998年提出的一种卷积神经网络架构,是深度学习领域的一个重要里程碑。这个网络最初是为了解决手写数字识别问题而设计的,在当时取得了突破性的成果。它的成功不仅证明了卷积神经网络在计算机视觉任务中的有效性,更为后来深度学习的发展奠定了重要基础。图1:LeNet-5网络结构示意图2.网络结构LeNet-5的结构非常优雅且
- 基于yolov11的瓶盖缺陷检测系统python源码+pytorch模型+评估指标曲线+精美GUI界面
FL1623863129
深度学习YOLOpytorch人工智能
【算法介绍】基于YOLOv11的瓶盖缺陷检测系统在现代制造业中,瓶盖的质量直接影响到产品的封装效果和消费者的使用体验。因此,对瓶盖进行快速、准确的缺陷检测至关重要。基于YOLOv11(YouOnlyLookOnceversion11)的瓶盖缺陷检测系统应运而生,为瓶盖质量监控提供了一种高效、智能的解决方案。该系统采用YOLOv11作为核心检测算法,这一算法融合了先进的深度学习技术和创新的网络架构,
- 【Python】构建智能语音助手:使用Python实现语音识别与合成的全面指南
蒙娜丽宁
Python杂谈python语音识别开发语言
随着人工智能技术的迅猛发展,语音助手已成为人们日常生活中不可或缺的一部分。从智能手机到智能家居设备,语音交互提供了便捷高效的人机交互方式。本文旨在全面介绍如何利用Python编程语言及其强大的库——SpeechRecognition和gTTS,构建一个基础但功能完备的语音助手。文章首先概述了语音识别与合成的基本原理和关键技术,随后详细讲解了如何安装和配置必要的开发环境。通过丰富的代码示例和详细的中
- 智慧农业平台与 DeepSeek 大模型的深度融合
jingwang-cs
人工智能后端
在数字化浪潮席卷全球的今天,农业领域正迎来一场深刻的变革。智慧农业,作为农业现代化的重要发展方向,正借助人工智能、大数据等前沿技术,实现从传统到现代的跨越。本文将为您详细介绍智慧农业领域的新趋势,以及智慧农业平台如何携手DeepSeek大模型,赋能农业数字化转型,引领农业迈向新时代。智慧农业的新趋势:拥抱DeepSeek大模型智慧农业的发展离不开技术创新的推动。近期,DeepSeek大模型在农业领
- ASP.NET Core与ASP.NET MVC的核心差异解析
AitTech
.Netasp.netmvc后端
ASP.NETCore与ASP.NETMVC都是微软提供的Web开发框架,但它们之间存在一些显著的区别。ASP.NETCoreASP.NETCore是一个免费且开放源代码的Web框架,由微软和社区共同开发。它是一个模块化框架,既可以在Windows上的完整.NETFramework上运行,也可以在跨平台的.NETCore(现已更名为.NET5及更高版本中的.NET)上运行。ASP.NETCore应
- 医院DEEPSEEK辅助应用
cainiaojunshi
智慧城市
一、背景介绍1.1国家政策支持《卫生健康行业人工智能应用场景参考指引》《“十四五”全民健康信息化规划》《关于进一步完善医疗卫生服务体系的意见》的发布。明确了84个AI在医疗健康领域的应用场景,涵盖了预防、诊断、治疗、康复等全流程。涉及医疗服务管理、基层公卫服务、健康产业发展以及医学教学科研等多个关键领域。国家层面明确将人工智能作为医疗领域新质生产力的核心驱动力,推动AI与临床诊疗、医院管理深度融
- 深度解析:Deepseek与Manus的根本区别——大模型与AI智能体的深度对比
火山说数
AI数字化人工智能AIAgent数字化ManusDeepseek
在人工智能领域,随着技术的发展,出现了许多强大的工具和系统。Deepseek和Manus便是其中两个广泛受到关注的系统,它们各自代表了人工智能发展的两条不同路径。一个侧重于“大脑”的建设,另一个则强调“手脚”的行动。虽然这两者都与智能技术息息相关,但它们的核心功能和应用场景却有着本质的不同。一、Deepseek:强大的“大脑”,但缺乏行动能力1.1什么是Deepseek?Deepseek是基于大规
- 第二十七个问题-AI Agent 与 RAG 的核心区别
释迦呼呼
AI一千问人工智能语言模型机器学习深度学习自然语言处理
AIAgent与RAG的核心区别AIAgent(人工智能代理)与RAG(检索增强生成)是当前生成式AI领域的两个关键技术,二者在功能定位、技术架构和应用场景上存在显著差异,但也可协同互补。以下从多个维度对比分析:1.核心目标维度AIAgentRAG主要目标自主执行复杂任务(感知、决策、行动闭环)通过检索外部知识增强生成结果的准确性智能性强调自主推理、多步规划与动态调整能力依赖检索与生成的静态组合,
- 2024-05-21 问AI: 介绍一下大语言模型的推理过程。
BigSharkTech 必杀技
用AI来理解AI人工智能语言模型自然语言处理
文心一言大语言模型的推理过程是一个复杂而精细的序列,它结合了深度学习和自然语言处理的技术,旨在理解和生成人类可以理解的自然语言文本。以下是该过程的主要步骤:输入文本的解析:当用户输入一段文本时,大语言模型首先会通过一个称为分词器的工具(tokenizer)对输入文本进行解析。分词器会将文本分解为一系列的单词或子词(tokens),并将它们转换为数字形式的序列。这些数字通常是单词在模型词典(voca
- 效率翻倍!超好用的AI+写作API接口汇总
程序员后端
在过去几年里,人工智能(AI)技术经过众多科技公司和科研人员的不懈努力取得了巨大进步,吸引了大众的广泛关注。这些AI技术在应用领域的新闻报道也逐渐走入人们的视野,引发了对其具体应用的浓厚兴趣。今天,我们将聊一聊AI与写作文案的结合。在传统观念中,AI技术通常被限制在有明确定义任务的领域。然而,实际上,AI在创造性任务,如写作方面,也展现出了强大的潜力。人工智能写作软件提供了多种选择,可用于生成长篇
- 安当TDE透明加密技术:为Manus大模型构建用户会话数据保护的“安全金库”
安 当 加 密
安全
摘要在人工智能技术深度落地的今天,大模型开发者面临的核心挑战已从算法优化转向数据安全。作为垂直领域大模型的代表,Manus凭借其强大的语义理解与个性化交互能力,在金融、医疗、教育等行业获得广泛应用。然而,其海量的用户会话数据存储与调用场景,也面临着数据泄露、非法篡改等安全威胁。上海安当基于TDE(TransparentDataEncryption)透明加密技术,推出了一套针对Manus大模型的用户
- 完全自主化的AI代理不应被开发
无穷之路
AI人工智能
HuggingFace前不久发布了一篇论文,题目《FullyAutonomousAIAgentsShouldNotbeDeveloped》,论证了完全自主化的AI代理不应被开发。核心观点随着AI代理人的自主性增加,用户放弃的控制权越多,系统带来的风险就越大。认为不应该开发完全自主的人工智能代理,提出了多层次自主性(从低级到高级)的框架。人工智能代理的历史文中首先回顾了人工智能代理的历史和发展现状,
- java封装继承多态等
麦田的设计者
javaeclipsejvmcencapsulatopn
最近一段时间看了很多的视频却忘记总结了,现在只能想到什么写什么了,希望能起到一个回忆巩固的作用。
1、final关键字
译为:最终的
&
- F5与集群的区别
bijian1013
weblogic集群F5
http请求配置不是通过集群,而是F5;集群是weblogic容器的,如果是ejb接口是通过集群。
F5同集群的差别,主要还是会话复制的问题,F5一把是分发http请求用的,因为http都是无状态的服务,无需关注会话问题,类似
- LeetCode[Math] - #7 Reverse Integer
Cwind
java题解MathLeetCodeAlgorithm
原题链接:#7 Reverse Integer
要求:
按位反转输入的数字
例1: 输入 x = 123, 返回 321
例2: 输入 x = -123, 返回 -321
难度:简单
分析:
对于一般情况,首先保存输入数字的符号,然后每次取输入的末位(x%10)作为输出的高位(result = result*10 + x%10)即可。但
- BufferedOutputStream
周凡杨
首先说一下这个大批量,是指有上千万的数据量。
例子:
有一张短信历史表,其数据有上千万条数据,要进行数据备份到文本文件,就是执行如下SQL然后将结果集写入到文件中!
select t.msisd
- linux下模拟按键输入和鼠标
被触发
linux
查看/dev/input/eventX是什么类型的事件, cat /proc/bus/input/devices
设备有着自己特殊的按键键码,我需要将一些标准的按键,比如0-9,X-Z等模拟成标准按键,比如KEY_0,KEY-Z等,所以需要用到按键 模拟,具体方法就是操作/dev/input/event1文件,向它写入个input_event结构体就可以模拟按键的输入了。
linux/in
- ContentProvider初体验
肆无忌惮_
ContentProvider
ContentProvider在安卓开发中非常重要。与Activity,Service,BroadcastReceiver并称安卓组件四大天王。
在android中的作用是用来对外共享数据。因为安卓程序的数据库文件存放在data/data/packagename里面,这里面的文件默认都是私有的,别的程序无法访问。
如果QQ游戏想访问手机QQ的帐号信息一键登录,那么就需要使用内容提供者COnte
- 关于Spring MVC项目(maven)中通过fileupload上传文件
843977358
mybatisspring mvc修改头像上传文件upload
Spring MVC 中通过fileupload上传文件,其中项目使用maven管理。
1.上传文件首先需要的是导入相关支持jar包:commons-fileupload.jar,commons-io.jar
因为我是用的maven管理项目,所以要在pom文件中配置(每个人的jar包位置根据实际情况定)
<!-- 文件上传 start by zhangyd-c --&g
- 使用svnkit api,纯java操作svn,实现svn提交,更新等操作
aigo
svnkit
原文:http://blog.csdn.net/hardwin/article/details/7963318
import java.io.File;
import org.apache.log4j.Logger;
import org.tmatesoft.svn.core.SVNCommitInfo;
import org.tmateso
- 对比浏览器,casperjs,httpclient的Header信息
alleni123
爬虫crawlerheader
@Override
protected void doGet(HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException
{
String type=req.getParameter("type");
Enumeration es=re
- java.io操作 DataInputStream和DataOutputStream基本数据流
百合不是茶
java流
1,java中如果不保存整个对象,只保存类中的属性,那么我们可以使用本篇文章中的方法,如果要保存整个对象 先将类实例化 后面的文章将详细写到
2,DataInputStream 是java.io包中一个数据输入流允许应用程序以与机器无关方式从底层输入流中读取基本 Java 数据类型。应用程序可以使用数据输出流写入稍后由数据输入流读取的数据。
- 车辆保险理赔案例
bijian1013
车险
理赔案例:
一货运车,运输公司为车辆购买了机动车商业险和交强险,也买了安全生产责任险,运输一车烟花爆竹,在行驶途中发生爆炸,出现车毁、货损、司机亡、炸死一路人、炸毁一间民宅等惨剧,针对这几种情况,该如何赔付。
赔付建议和方案:
客户所买交强险在这里不起作用,因为交强险的赔付前提是:“机动车发生道路交通意外事故”;
如果是交通意外事故引发的爆炸,则优先适用交强险条款进行赔付,不足的部分由商业
- 学习Spring必学的Java基础知识(5)—注解
bijian1013
javaspring
文章来源:http://www.iteye.com/topic/1123823,整理在我的博客有两个目的:一个是原文确实很不错,通俗易懂,督促自已将博主的这一系列关于Spring文章都学完;另一个原因是为免原文被博主删除,在此记录,方便以后查找阅读。
有必要对
- 【Struts2一】Struts2 Hello World
bit1129
Hello world
Struts2 Hello World应用的基本步骤
创建Struts2的Hello World应用,包括如下几步:
1.配置web.xml
2.创建Action
3.创建struts.xml,配置Action
4.启动web server,通过浏览器访问
配置web.xml
<?xml version="1.0" encoding="
- 【Avro二】Avro RPC框架
bit1129
rpc
1. Avro RPC简介 1.1. RPC
RPC逻辑上分为二层,一是传输层,负责网络通信;二是协议层,将数据按照一定协议格式打包和解包
从序列化方式来看,Apache Thrift 和Google的Protocol Buffers和Avro应该是属于同一个级别的框架,都能跨语言,性能优秀,数据精简,但是Avro的动态模式(不用生成代码,而且性能很好)这个特点让人非常喜欢,比较适合R
- lua set get cookie
ronin47
lua cookie
lua:
local access_token = ngx.var.cookie_SGAccessToken
if access_token then
ngx.header["Set-Cookie"] = "SGAccessToken="..access_token.."; path=/;Max-Age=3000"
end
- java-打印不大于N的质数
bylijinnan
java
public class PrimeNumber {
/**
* 寻找不大于N的质数
*/
public static void main(String[] args) {
int n=100;
PrimeNumber pn=new PrimeNumber();
pn.printPrimeNumber(n);
System.out.print
- Spring源码学习-PropertyPlaceholderHelper
bylijinnan
javaspring
今天在看Spring 3.0.0.RELEASE的源码,发现PropertyPlaceholderHelper的一个bug
当时觉得奇怪,上网一搜,果然是个bug,不过早就有人发现了,且已经修复:
详见:
http://forum.spring.io/forum/spring-projects/container/88107-propertyplaceholderhelper-bug
- [逻辑与拓扑]布尔逻辑与拓扑结构的结合会产生什么?
comsci
拓扑
如果我们已经在一个工作流的节点中嵌入了可以进行逻辑推理的代码,那么成百上千个这样的节点如果组成一个拓扑网络,而这个网络是可以自动遍历的,非线性的拓扑计算模型和节点内部的布尔逻辑处理的结合,会产生什么样的结果呢?
是否可以形成一种新的模糊语言识别和处理模型呢? 大家有兴趣可以试试,用软件搞这些有个好处,就是花钱比较少,就算不成
- ITEYE 都换百度推广了
cuisuqiang
GoogleAdSense百度推广广告外快
以前ITEYE的广告都是谷歌的Google AdSense,现在都换成百度推广了。
为什么个人博客设置里面还是Google AdSense呢?
都知道Google AdSense不好申请,这在ITEYE上也不是讨论了一两天了,强烈建议ITEYE换掉Google AdSense。至少,用一个好申请的吧。
什么时候能从ITEYE上来点外快,哪怕少点
- 新浪微博技术架构分析
dalan_123
新浪微博架构
新浪微博在短短一年时间内从零发展到五千万用户,我们的基层架构也发展了几个版本。第一版就是是非常快的,我们可以非常快的实现我们的模块。我们看一下技术特点,微博这个产品从架构上来分析,它需要解决的是发表和订阅的问题。我们第一版采用的是推的消息模式,假如说我们一个明星用户他有10万个粉丝,那就是说用户发表一条微博的时候,我们把这个微博消息攒成10万份,这样就是很简单了,第一版的架构实际上就是这两行字。第
- 玩转ARP攻击
dcj3sjt126com
r
我写这片文章只是想让你明白深刻理解某一协议的好处。高手免看。如果有人利用这片文章所做的一切事情,盖不负责。 网上关于ARP的资料已经很多了,就不用我都说了。 用某一位高手的话来说,“我们能做的事情很多,唯一受限制的是我们的创造力和想象力”。 ARP也是如此。 以下讨论的机子有 一个要攻击的机子:10.5.4.178 硬件地址:52:54:4C:98
- PHP编码规范
dcj3sjt126com
编码规范
一、文件格式
1. 对于只含有 php 代码的文件,我们将在文件结尾处忽略掉 "?>" 。这是为了防止多余的空格或者其它字符影响到代码。例如:<?php$foo = 'foo';2. 缩进应该能够反映出代码的逻辑结果,尽量使用四个空格,禁止使用制表符TAB,因为这样能够保证有跨客户端编程器软件的灵活性。例
- linux 脱机管理(nohup)
eksliang
linux nohupnohup
脱机管理 nohup
转载请出自出处:http://eksliang.iteye.com/blog/2166699
nohup可以让你在脱机或者注销系统后,还能够让工作继续进行。他的语法如下
nohup [命令与参数] --在终端机前台工作
nohup [命令与参数] & --在终端机后台工作
但是这个命令需要注意的是,nohup并不支持bash的内置命令,所
- BusinessObjects Enterprise Java SDK
greemranqq
javaBOSAPCrystal Reports
最近项目用到oracle_ADF 从SAP/BO 上调用 水晶报表,资料比较少,我做一个简单的分享,给和我一样的新手 提供更多的便利。
首先,我是尝试用JAVA JSP 去访问的。
官方API:http://devlibrary.businessobjects.com/BusinessObjectsxi/en/en/BOE_SDK/boesdk_ja
- 系统负载剧变下的管控策略
iamzhongyong
高并发
假如目前的系统有100台机器,能够支撑每天1亿的点击量(这个就简单比喻一下),然后系统流量剧变了要,我如何应对,系统有那些策略可以处理,这里总结了一下之前的一些做法。
1、水平扩展
这个最容易理解,加机器,这样的话对于系统刚刚开始的伸缩性设计要求比较高,能够非常灵活的添加机器,来应对流量的变化。
2、系统分组
假如系统服务的业务不同,有优先级高的,有优先级低的,那就让不同的业务调用提前分组
- BitTorrent DHT 协议中文翻译
justjavac
bit
前言
做了一个磁力链接和BT种子的搜索引擎 {Magnet & Torrent},因此把 DHT 协议重新看了一遍。
BEP: 5Title: DHT ProtocolVersion: 3dec52cb3ae103ce22358e3894b31cad47a6f22bLast-Modified: Tue Apr 2 16:51:45 2013 -070
- Ubuntu下Java环境的搭建
macroli
java工作ubuntu
配置命令:
$sudo apt-get install ubuntu-restricted-extras
再运行如下命令:
$sudo apt-get install sun-java6-jdk
待安装完毕后选择默认Java.
$sudo update- alternatives --config java
安装过程提示选择,输入“2”即可,然后按回车键确定。
- js字符串转日期(兼容IE所有版本)
qiaolevip
TODateStringIE
/**
* 字符串转时间(yyyy-MM-dd HH:mm:ss)
* result (分钟)
*/
stringToDate : function(fDate){
var fullDate = fDate.split(" ")[0].split("-");
var fullTime = fDate.split("
- 【数据挖掘学习】关联规则算法Apriori的学习与SQL简单实现购物篮分析
superlxw1234
sql数据挖掘关联规则
关联规则挖掘用于寻找给定数据集中项之间的有趣的关联或相关关系。
关联规则揭示了数据项间的未知的依赖关系,根据所挖掘的关联关系,可以从一个数据对象的信息来推断另一个数据对象的信息。
例如购物篮分析。牛奶 ⇒ 面包 [支持度:3%,置信度:40%] 支持度3%:意味3%顾客同时购买牛奶和面包。 置信度40%:意味购买牛奶的顾客40%也购买面包。 规则的支持度和置信度是两个规则兴
- Spring 5.0 的系统需求,期待你的反馈
wiselyman
spring
Spring 5.0将在2016年发布。Spring5.0将支持JDK 9。
Spring 5.0的特性计划还在工作中,请保持关注,所以作者希望从使用者得到关于Spring 5.0系统需求方面的反馈。