PID控制器仍是现今应用最广的控制器.但由于其被控对象具有高阶非线性等特点,传统的PID参数整定方法使系统易出现超调,震荡,控制系统性能变差等问题.
%% 清空环境变量
clc;
clear;
%% 初始化参数
domx = [-3, 3; -3, 3]; % 定义域
rho = 0.9; % 荧光素挥发因子
gamma = 0.1; % 适应度提取比例
beta = 0.58; % 邻域变化率
nt = 6; % 邻域阀值(邻域萤火虫数)
s = 0.03; % 步长
iot0 = 400; % 荧光素初始浓度
rs = 3; % 感知半径
r0 = 3; % 决策半径
m = size(domx, 1); % 函数空间维数
n = 50; % 萤火虫数量
gaddress = zeros(n, m); % 分配萤火虫地址空间
gvalue = zeros(n, 1); % 分配适应度存放空间
ioti = zeros(n, 1); % 分配荧光素存放空间
rdi = zeros(n, 1); % 分配萤火虫决策半径存放空间
%% 萤火虫常量初始化
% 初始化地址
for i = 1:m
gaddress(:, i) = domx(i, 1)+(domx(i, 2)-domx(i, 1))*rand(n, 1);
end
% 初始化荧光素浓度
ioti(:, 1) = iot0;
% 初始化决策半径
rdi(:, 1) = r0;
iter_max = 500; % 最大迭代次数
t = 1; % 迭代计数器
yy = zeros(iter_max, 1); % 各代最优解
%% 迭代寻优
while t <= iter_max
% 更新荧光素浓度
ioti = (1-rho)*ioti+gamma*fun(gaddress);
% 各萤火虫移动过程开始
for i = 1:n
% 决策半径内找更优点
Nit = []; % 存放萤火虫序号
for j = 1:n
if norm(gaddress(j, :)-gaddress(i, :)) < rdi(i) && ioti(i, 1) < ioti(j, 1)
Nit(numel(Nit)+1) = j;
end
end
% 找下一步移动的点开始
if ~isempty(Nit)
Nitioti = ioti(Nit, 1); % 选出Nit荧光素
SumNitioti = sum(Nitioti); % Nit荧光素和
Molecular = Nitioti-ioti(i, 1); % 分子
Denominator = SumNitioti-ioti(i, 1); % 分母
Pij = Molecular./Denominator; % 计算Nit各元素被选择概率
Pij = cumsum(Pij); % 累计
Pij = Pij./Pij(end); % 归一化
Pos = find(rand < Pij); % 确定位置
j = Nit(Pos(1)); % 确定j的位置
% 萤火虫i向j移动一小步
gaddress(i, :) = gaddress(i, :)+s*(gaddress(j, :)-gaddress(i, :))/norm(gaddress(j, :)-gaddress(i, :));
% 边界处理(限制范围)
gaddress(i, :) = min(gaddress(i, :), domx(1, 2));
gaddress(i, :) = max(gaddress(i, :), domx(1, 1));
% 更新决策半径
rdi(i) = rdi(i)+beta*(nt-length(Nit));
if rdi(i, 1) < 0
rdi(i, 1) = 0;
end
if rdi(i, 1) > rs
rdi(i, 1) = rs;
end
end
end
% 每代最优解存入yy数组内
yy(t) = max(fun(gaddress));
% 迭代次数+1
t = t+1;
end
%% 结果显示
gvalue = fun(gaddress); % 求各个萤火虫的值
disp('最大值为:')
num = find(gvalue == max(gvalue)); % 最大值序号
MaxValue = max(gvalue)
disp('最优解为:')
BestAddress = gaddress(num, :)
figure;
plot(yy, 'r', 'linewidth', 2)
xlabel ('迭代次数'); ylabel( '函数值');
title( 'GSO算法各代最优解变化');
[1]李远梅, 张宏立. 基于改进萤火虫算法PID控制器参数优化研究[J]. 计算机仿真, 2015, 32(9):4.
[2]李恒, 郭星, 李炜. 基于改进的萤火虫算法的PID控制器参数寻优[J]. 计算机应用与软件, 2017, 34(7):4.
部分理论引用网络文献,若有侵权联系博主删除。