python explode_pandas dataframe 中的explode函数用法详解

在使用 pandas 进行数据分析的过程中,我们常常会遇到将一行数据展开成多行的需求,多么希望能有一个类似于 hive sql 中的 explode 函数。

这个函数如下:

Code

# !/usr/bin/env python

# -*- coding:utf-8 -*-

# create on 18/4/13

import pandas as pd

def dataframe_explode(dataframe, fieldname):

temp_fieldname = fieldname + '_made_tuple_'

dataframe[temp_fieldname] = dataframe[fieldname].apply(tuple)

list_of_dataframes = []

for values in dataframe[temp_fieldname].unique().tolist():

list_of_dataframes.append(pd.DataFrame({

temp_fieldname: [values] * len(values),

fieldname: list(values),

}))

dataframe = dataframe[list(set(dataframe.columns) - set([fieldname]))].merge(pd.concat(list_of_dataframes), how='left', on=temp_fieldname)

del dataframe[temp_fieldname]

return dataframe

df = pd.DataFrame({'listcol':[[1,2,3],[4,5,6]], "aa": [222,333]})

df = dataframe_explode(df, "listcol")

Description

将 dataframe 按照某一指定列进行展开,使得原来的每一行展开成一行或多行。( 注:该列可迭代, 例如list, tuple, set)

补充知识:Pandas列中的字典/列表拆分为单独的列

我就废话不多说了,大家还是直接看代码吧

[1] df

Station ID Pollutants

8809 {"a": "46", "b": "3", "c": "12"}

8810 {"a": "36", "b": "5", "c": "8"}

8811 {"b": "2", "c": "7"}

8812 {"c": "11"}

8813 {"a": "82", "c": "15"}

Method 1:

step 1: convert the Pollutants column to Pandas dataframe series

df_pol_ps = data_df['Pollutants'].apply(pd.Series)

df_pol_ps:

a b c

0 46 3 12

1 36 5 8

2 NaN 2 7

3 NaN NaN 11

4 82 NaN 15

step 2: concat columns a, b, c and drop/remove the Pollutants

df_final = pd.concat([df, df_pol_ps], axis = 1).drop('Pollutants', axis = 1)

df_final:

StationID a b c

0 8809 46 3 12

1 8810 36 5 8

2 8811 NaN 2 7

3 8812 NaN NaN 11

4 8813 82 NaN 15

Method 2:

df_final = pd.concat([df, df['Pollutants'].apply(pd.Series)], axis = 1).drop('Pollutants', axis = 1)

df_final:

StationID a b c

0 8809 46 3 12

1 8810 36 5 8

2 8811 NaN 2 7

3 8812 NaN NaN 11

4 8813 82 NaN 15

以上这篇pandas dataframe 中的explode函数用法详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

你可能感兴趣的:(python,explode)