【数据结构与算法-初阶】树与二叉树

目录

1. 树概念及结构

1.1 树的概念

1.2 树的相关概念

1.3 树的表示

1.4 树的实际应用:

2. 二叉树

2.1 二叉树的概念

 2.2 特殊的二叉树

2.3 二叉树的性质

2.4 二叉树的存储结构

2.4.1 顺序存储

 2.4.2 链式存储       


1. 树概念及结构

1.1 树的概念

树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的

1)有一个特殊的结点,称为根结点,根节点没有前驱结点

2)除根节点外,其余结点被分成M(M>0)个互不相交的集合T1、T2、……、Tm,其中每一个集合Ti(1<= i<= m)又是一棵结构与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继

3)因此,树是递归定义的。

【数据结构与算法-初阶】树与二叉树_第1张图片【数据结构与算法-初阶】树与二叉树_第2张图片

 树形结构中,子树之间不能有交集,否则就不是树形结构(不能成环

【数据结构与算法-初阶】树与二叉树_第3张图片

1.2 树的相关概念

【数据结构与算法-初阶】树与二叉树_第4张图片

节点的度:一个节点含有的子树的个数称为该节点的度; 如上图:A的度为6;
叶子节点或终端节点:度为0的节点称为叶子节点; 如上图:B、C、H、I...等节点为叶子节点;
非终端节点或分支节点:度不为0的节点; 如上图:D、E、F、G...等节点为分支节点;
双亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点; 如上图:A是B的父节点;
孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点; 如上图:B是A的孩子节点;
兄弟节点:具有相同父节点的节点互称为兄弟节点; 如上图:B、C是兄弟节点;
树的度:一棵树中,最大的节点的度称为树的度; 如上图:树的度为6;
节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推;
树的高度或深度:树中节点的最大层次; 如上图:树的高度为4;
堂兄弟节点:双亲在同一层的节点互为堂兄弟;如上图:H、I互为兄弟节点;
节点的祖先:从根到该节点所经分支上的所有节点;如上图:A是所有节点的祖先;
子孙:以某节点为根的子树中任一节点都称为该节点的子孙。如上图:所有节点都是A的子孙;
森林:由m(m>0)棵互不相交的树的集合称为森林;
 

1.3 树的表示

树常见的表示方式是左孩子,右兄弟的表示方法。

typedef int DataType;
struct Tree
{
	struct Node* child; // 孩子结点
	struct Node* brother; // 指向兄弟的结点
	DataType data; // 数据域
};

【数据结构与算法-初阶】树与二叉树_第5张图片

只要是没有指向的都是指向 NULL,我们只需要把 child 指向第一个孩子,brother 指向兄弟,没有兄弟的指向为 NULL,就可以得到一颗树 

1.4 树的实际应用:

树可以表示文件系统的目录:

【数据结构与算法-初阶】树与二叉树_第6张图片

2. 二叉树

2.1 二叉树的概念

一棵二叉树是结点的一个有限集合,该集合:

1. 或者为空

2. 由一个根节点加上两棵别称为左子树和右子树的二叉树组成 

【数据结构与算法-初阶】树与二叉树_第7张图片

 我们可以看出:

1. 二叉树不存在度大于2的结点 

2. 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树 

二叉树也有下面几种特殊情况:

【数据结构与算法-初阶】树与二叉树_第8张图片

 2.2 特殊的二叉树

1. 满二叉树:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是说,如果一个二叉树的层数为K,且结点总数是 2^k-1,则它就是满二叉树。
2. 完全二叉树:完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。

区分下满二叉树和完全二叉树:

【数据结构与算法-初阶】树与二叉树_第9张图片

2.3 二叉树的性质

【数据结构与算法-初阶】树与二叉树_第10张图片

2.4 二叉树的存储结构

二叉树一般可以使用两种结构存储,一种顺序结构,一种链式结构

2.4.1 顺序存储

顺序结构存储就是使用 数组来存储,一般使用数组 只适合表示完全二叉树,因为不是完全二叉树会有空间的浪费。而现实中使用中只有堆才会使用数组来存储 ,二叉树的顺序存储在物理上是一个数组,在逻辑上是一颗二叉树。

【数据结构与算法-初阶】树与二叉树_第11张图片

 2.4.2 链式存储       

二叉树的链式存储结构是指,用 链表来表示一棵二叉树,即用链来指示元素的逻辑关系。二叉链表 是链表中每个结点由三个域组成,数据域和左右指针域,左右指针分别用来给出该结点左孩子和右孩子所在的链结点的存储地址,而三叉链表 多加了一个指向双亲节点的指针域。

【数据结构与算法-初阶】树与二叉树_第12张图片

typedef int BTDataType;

// 二叉链
struct BinaryTreeNode
{
	struct BinTreeNode* pLeft; // 指向当前节点左孩子
	struct BinTreeNode* pRight; // 指向当前节点右孩子
	BTDataType data; // 当前节点值域
};

// 三叉链
struct BinaryTreeNode
{
	struct BinTreeNode* pParent; // 指向当前节点的双亲
	struct BinTreeNode* pLeft; // 指向当前节点左孩子
	struct BinTreeNode* pRight; // 指向当前节点右孩子
	BTDataType data; // 当前节点值域
};

你可能感兴趣的:(数据结构与算法-初阶,c语言,c++,数据结构,树)