快速掌握zookeeper

文章目录

  • 1、 是什么
    • 1.1 特点
    • 1.2 数据结构
    • 1.3 应用场景
      • 1.3.1 统一命名服务
      • 1.3.2 统一配置管理
      • 1.3.3 统一集群管理
      • 1.3.4 服务器动态上下线
      • 1.3.5 软负载均衡
    • 1.4 下载地址
  • 2、 安装
    • 2.1 本地模式安装
    • 2.2 配置参数解读
  • 3、Zookeeer集群操作
    • 3.1 集群操作
      • 3.1.1 集群安装
      • 3.1.2 选举机制
      • 3.1.3 ZK集群启动停止脚本
    • 3.2 客户端命令行操作
      • 3.2.1 命令行语法
      • 3.2.2 znode节点数据信息
      • 3.2.3 节点类型(持久/短暂/有序号/无序号)
      • 3.2.4 监听器原理
      • 3.2.5 节点删除与查看
    • 3.3 客户端API操作
      • 3.3.1 IDEA 环境搭建
      • 3.3.2 创建ZooKeeper客户端
      • 3.3.3 创建子节点
      • 3.3.4 获取子节点并监听节点变化
      • 3.3.5 判断Znode是否存在
    • 3.4 客户端向服务端写数据流程
  • 4、服务器动态上下线监听案例
    • 4.1 需求
    • 4.2 需求分析
    • 4.3 具体实现
    • 4.4 测试
  • 5、 ZooKeeper 分布式锁案例
    • 5.1 原生Zookeeper实现分布式锁案例
    • 5.2 Curator框架实现分布式锁案例

1、 是什么

Zookeeper 是一个开源的分布式的,为分布式框架提供协调服务的 Apache 项目。

Zookeeper从设计模式角度来理解:是一个基于观察者模式设计的分布式服务管理框架,它负责存储和管理大家都关心的数据,然 后接 受观察者的注 册,一旦这些数据的状态发生变化,Zookeeper就 将负责通知已经在Zookeeper上注册的那些观察者做出相应的反应。

1.1 特点

(1)Zookeeper:一个领导者(Leader),多个跟随者(Follower)组成的集群。

(2)集群中只要有半数以上节点存活,Zookeeper集群就能正常服务。所 以Zookeeper适合安装奇数台服务器。

(3)全局数据一致:每个Server保存一份相同的数据副本,Client无论连接到哪个Server,数据都是一致的。

(4)更新请求顺序执行,来自同一个Client的更新请求按其发送顺序依次执行。

(5)数据更新原子性,一次数据更新要么成功,要么失败。

(6)实时性,在一定时间范围内,Client能读到最新数据。

快速掌握zookeeper_第1张图片

1.2 数据结构

ZooKeeper 数据模型的结构与 Unix 文件系统很类似,整体上可以看作是一棵树,每个节点称做一个 ZNode。每一个 ZNode 默认能够存储 1MB 的数据,每个 ZNode 都可以通过其路径唯一标识。

1.3 应用场景

1.3.1 统一命名服务

提供的服务包括:统一命名服务、统一配置管理、统一集群管理服务器节点动态上下线、软负载均衡等。在分布式环境下,经常需要对应用/服务进行统一命名,便于识别。

例如:IP不容易记住,而域名容易记住。

快速掌握zookeeper_第2张图片

1.3.2 统一配置管理

  1. 分布式环境下,配置文件同步非常常见。

(1)一般要求一个集群中,所有节点的配置信息是一致的,比如 Kafka 集群。

(2)对配置文件修改后,希望能够快速同步到各个、节点上。

  1. 配置管理可交由ZooKeeper实现。

    (1)可将配置信息写入ZooKeeper上的一个Znode。

    (2)各个客户端服务器监听这个Znode。

    (3)一 旦Znode中的数据被修改,ZooKeeper将通知各个客户端服务器。

1.3.3 统一集群管理

  1. 分布式环境中,实时掌握每个节点的状态是必要的。

(1)可根据节点实时状态做出一些调整。

  1. ZooKeeper可以实现实时监控节点状态变化

(1)可将节点信息写入ZooKeeper上的一个ZNode。

(2)监听这个ZNode可获取它的实时状态变化。

1.3.4 服务器动态上下线

快速掌握zookeeper_第3张图片

1.3.5 软负载均衡

在Zookeeper中记录每台服务器的访问数,让访问数最少的服务器去处理最新的客户端请求

快速掌握zookeeper_第4张图片

1.4 下载地址

官网首页

https://zookeeper.apache.org/

下载截图

快速掌握zookeeper_第5张图片

快速掌握zookeeper_第6张图片

快速掌握zookeeper_第7张图片

下载 Linux 环境安装的 tar 包

快速掌握zookeeper_第8张图片

2、 安装

2.1 本地模式安装

  1. 安装前准备

    (1)安装 JDK

    (2)拷贝 apache-zookeeper-3.5.7-bin.tar.gz 安装包到 Linux 系统下

    (3)解压到指定目录

    [atguigu@hadoop102 software]$ tar -zxvf apache-zookeeper-3.5.7-bin.tar.gz -C /opt/module/
    

    (4)修改名称

    [atguigu@hadoop102 module]$ mv apache-zookeeper-3.5.7 -bin/ zookeeper-3.5.7
    
    1. 配置修改

      (1)将/opt/module/zookeeper-3.5.7/conf 这个路径下的 zoo_sample.cfg 修改为 zoo.cfg;

      [atguigu@hadoop102 conf]$ mv zoo_sample.cfg zoo.cfg
      

      (2)打开 zoo.cfg 文件,修改 dataDir 路径:

      [atguigu@hadoop102 zookeeper-3.5.7]$ vim zoo.cfg
      

      修改如下内容:

      dataDir=/opt/module/zookeeper-3.5.7/zkData
      

      (3)在/opt/module/zookeeper-3.5.7/这个目录上创建 zkData 文件夹

      [atguigu@hadoop102 zookeeper-3.5.7]$ mkdir zkData
      
      1. 操作zookeeper

        (1)启动 Zookeeper

        [atguigu@hadoop102 zookeeper-3.5.7]$ bin/zkServer.sh start
        

        (2)查看进程是否启动

        [atguigu@hadoop102 zookeeper-3.5.7]$ jps
        4020 Jps
        4001 QuorumPeerMain
        

        (3)查看状态

        [atguigu@hadoop102 zookeeper-3.5.7]$ bin/zkServer.sh status
        ZooKeeper JMX enabled by default
        Using config: /opt/module/zookeeper-3.5.7/bin/../conf/zoo.cfg
        Mode: standalone
        

        (4)启动客户端

        [atguigu@hadoop102 zookeeper-3.5.7]$ bin/zkCli.sh
        

        (5)退出客户端:

        [zk: localhost:2181(CONNECTED) 0] quit
        

        (6)停止 Zookeeper

        [atguigu@hadoop102 zookeeper-3.5.7]$ bin/zkServer.sh stop
        

2.2 配置参数解读

Zookeeper中的配置文件zoo.cfg中参数含义解读如下:

(1)tickTime = 2000:通信心跳时间,Zookeeper服务器与客户端心跳时间,单位毫秒

快速掌握zookeeper_第9张图片

(2)initLimit = 10:LF初始通信时限

快速掌握zookeeper_第10张图片

(3)syncLimt = 5LF同步通信时限

快速掌握zookeeper_第11张图片

(4)dataDir:保存Zookeeper中的数据

注意:默认的tmp目录,容易被Linux系统定期删除,所以一般不用默认的tmp目录。

(5)clientPort = 2181:客户端连接端口,通常不做修改。

3、Zookeeer集群操作

3.1 集群操作

3.1.1 集群安装

1、集群规划

在 hadoop102、hadoop103 和 hadoop104 三个节点上都部署 Zookeeper。

2、解压安装

(1)在 hadoop102 解压 Zookeeper 安装包到/opt/module/目录下

[atguigu@hadoop102 software]$ tar -zxvf apache-zookeeper-3.5.7-bin.tar.gz -C /opt/module/

(2)修改 apache-zookeeper-3.5.7-bin 名称为 zookeeper-3.5.7

[atguigu@hadoop102 module]$ mv apache-zookeeper-3.5.7-bin/zookeeper-3.5.7

3、配置服务器编号

(1)在/opt/module/zookeeper-3.5.7/这个目录下创建 zkData

[atguigu@hadoop102 zookeeper-3.5.7]$ mkdir zkData

(2)在/opt/module/zookeeper-3.5.7/zkData 目录下创建一个 myid 的文件

[atguigu@hadoop102 zkData]$ vi myid

在文件中添加与 server 对应的编号(注意:上下不要有空行,左右不要有空格)

2

注意:添加 myid 文件,一定要在 Linux 里面创建,在 notepad++里面很可能乱码

(3)拷贝配置好的 zookeeper 到其他机器上

[atguigu@hadoop102 module ]$ xsync zookeeper-3.5.7

并分别在 hadoop103、hadoop104 上修改 myid 文件中内容为 3、4

4、配置zoo.cfg文件

(1)重命名/opt/module/zookeeper-3.5.7/conf 这个目录下的 zoo_sample.cfg 为 zoo.cfg

[atguigu@hadoop102 conf]$ mv zoo_sample.cfg zoo.cfg

(2)打开 zoo.cfg 文件

[atguigu@hadoop102 conf]$ vim zoo.cfg

#修改数据存储路径配置

dataDir=/opt/module/zookeeper-3.5.7/zkData

#增加如下配置

#######################cluster##########################
server.2=hadoop102:2888:3888
server.3=hadoop103:2888:3888
server.4=hadoop104:2888:3888

(3)配置参数解读

server.A=B:C:D

A 是一个数字,表示这个是第几号服务器;

集群模式下配置一个文件 myid,这个文件在 dataDir 目录下,这个文件里面有一个数据就是 A 的值,Zookeeper 启动时读取此文件,拿到里面的数据与 zoo.cfg 里面的配置信息比较从而判断到底是哪个 server。

B 是这个服务器的地址;

C 是这个服务器 Follower 与集群中的 Leader 服务器交换信息的端口;

D 是万一集群中的 Leader 服务器挂了,需要一个端口来重新进行选举,选出一个新的Leader,而这个端口就是用来执行选举时服务器相互通信的端口。

(4)同步 zoo.cfg 配置文件

[atguigu@hadoop102 conf]$ xsync zoo.cfg

5、集群操作

(1)分别启动 Zookeeper

[atguigu@hadoop102 zookeeper-3.5.7]$ bin/zkServer.sh start
[atguigu@hadoop103 zookeeper-3.5.7]$ bin/zkServer.sh start
[atguigu@hadoop104 zookeeper-3.5.7]$ bin/zkServer.sh start

(2)查看状态

[atguigu@hadoop102 zookeeper-3.5.7]# bin/zkServer.sh status
JMX enabled by default
Using config: /opt/module/zookeeper-3.5.7/bin/../conf/zoo.cfg
Mode: follower
[atguigu@hadoop103 zookeeper-3.5.7]# bin/zkServer.sh status
JMX enabled by default
Using config: /opt/module/zookeeper-3.5.7/bin/../conf/zoo.cfg
Mode: leader
[atguigu@hadoop104 zookeeper-3.4.5]# bin/zkServer.sh status
JMX enabled by default
Using config: /opt/module/zookeeper-3.5.7/bin/../conf/zoo.cfg
Mode: follower

3.1.2 选举机制

Zookeeper选举机制——第一次启动

快速掌握zookeeper_第12张图片

Zookeeper选举机制——非第一次启动

快速掌握zookeeper_第13张图片

3.1.3 ZK集群启动停止脚本

(1)在 hadoop102 的/home/atguigu/bin 目录下创建脚本

[atguigu@hadoop102 bin]$ vim zk.sh

在脚本中编写如下内容

#!/bin/bash
case $1 in
"start"){
for i in hadoop102 hadoop103 hadoop104
do
 echo ---------- zookeeper $i 启动 ------------
ssh $i "/opt/module/zookeeper-3.5.7/bin/zkServer.sh 
start"
done
};;
"stop"){
for i in hadoop102 hadoop103 hadoop104
do
 echo ---------- zookeeper $i 停止 ------------ 
ssh $i "/opt/module/zookeeper-3.5.7/bin/zkServer.sh 
stop"
done
};;
"status"){
for i in hadoop102 hadoop103 hadoop104
do
 echo ---------- zookeeper $i 状态 ------------ 
ssh $i "/opt/module/zookeeper-3.5.7/bin/zkServer.sh 
status"
done
};;
esac

(2) 增加脚本执行权限

[atguigu@hadoop102 bin]$ chmod u+x zk.sh

(3)Zookeeper 集群启动脚本

[atguigu@hadoop102 module]$ zk.sh start

(4)Zookeeper 集群停止脚本

[atguigu@hadoop102 module]$ zk.sh stop

3.2 客户端命令行操作

3.2.1 命令行语法

快速掌握zookeeper_第14张图片

快速掌握zookeeper_第15张图片

1、启动客户端

[atguigu@hadoop102 zookeeper-3.5.7]$ bin/zkCli.sh -server 
hadoop102:2181

2、显示所有操作命令

[zk: hadoop102:2181(CONNECTED) 1] help

3.2.2 znode节点数据信息

1 、查看当前znode中所包含的内容

[zk: hadoop102:2181(CONNECTED) 0] ls /
[zookeeper]

2、查看当前节点详细数据

[zk: hadoop102:2181(CONNECTED) 5] ls -s /
[zookeeper]cZxid = 0x0
ctime = Thu Jan 01 08:00:00 CST 1970
mZxid = 0x0
mtime = Thu Jan 01 08:00:00 CST 1970
pZxid = 0x0
cversion = -1
dataVersion = 0
aclVersion = 0
ephemeralOwner = 0x0
dataLength = 0
numChildren = 1

(1)czxid:创建节点的事务 zxid

每次修改 ZooKeeper 状态都会产生一个 ZooKeeper 事务 ID。事务 ID 是 ZooKeeper 中所

有修改总的次序。每次修改都有唯一的 zxid,如果 zxid1 小于 zxid2,那么 zxid1 在 zxid2 之

前发生。

(2)ctime:znode 被创建的毫秒数(从 1970 年开始)

(3)mzxid:znode 最后更新的事务 zxid

(4)mtime:znode 最后修改的毫秒数(从 1970 年开始)

(5)pZxid:znode 最后更新的子节点 zxid

(6)cversion:znode 子节点变化号,znode 子节点修改次数

(7)dataversion:znode 数据变化号

(8)aclVersion:znode 访问控制列表的变化号

(9)ephemeralOwner:如果是临时节点,这个是 znode 拥有者的 session id。如果不是

临时节点则是 0。

(10)dataLength:znode 的数据长度

(11)numChildren:znode 子节点数量

3.2.3 节点类型(持久/短暂/有序号/无序号)

节点类型

快速掌握zookeeper_第16张图片

1、分别创建2个普通节点(永久节点 + 不带序号)

[zk: localhost:2181(CONNECTED) 3] create /sanguo "diaochan"
Created /sanguo
[zk: localhost:2181(CONNECTED) 4] create /sanguo/shuguo 
"liubei"
Created /sanguo/shuguo

注意:创建节点时,要赋值

2、获得节点的值

[zk: localhost:2181(CONNECTED) 5] get -s /sanguo
diaochan
cZxid = 0x100000003
ctime = Wed Aug 29 00:03:23 CST 2018
mZxid = 0x100000003
mtime = Wed Aug 29 00:03:23 CST 2018
pZxid = 0x100000004
cversion = 1
dataVersion = 0
aclVersion = 0
ephemeralOwner = 0x0
dataLength = 7
numChildren = 1
[zk: localhost:2181(CONNECTED) 6] get -s /sanguo/shuguo
liubei
cZxid = 0x100000004
ctime = Wed Aug 29 00:04:35 CST 2018
mZxid = 0x100000004
mtime = Wed Aug 29 00:04:35 CST 2018
pZxid = 0x100000004
cversion = 0
dataVersion = 0
aclVersion = 0
ephemeralOwner = 0x0
dataLength = 6
numChildren = 0

3、创建带序号的节点(永久节点 + 带序号)

(1)先创建一个普通的根节点/sanguo/weiguo

[zk: localhost:2181(CONNECTED) 1] create /sanguo/weiguo 
"caocao"
Created /sanguo/weiguo

(2)创建带序号的节点

[zk: localhost:2181(CONNECTED) 2] create -s 
/sanguo/weiguo/zhangliao "zhangliao"
Created /sanguo/weiguo/zhangliao0000000000
[zk: localhost:2181(CONNECTED) 3] create -s 
/sanguo/weiguo/zhangliao "zhangliao"
Created /sanguo/weiguo/zhangliao0000000001
[zk: localhost:2181(CONNECTED) 4] create -s 
/sanguo/weiguo/xuchu "xuchu"
Created /sanguo/weiguo/xuchu0000000002

如果原来没有序号节点,序号从 0 开始依次递增。如果原节点下已有 2 个节点,则再排序时从 2 开始,以此类推。

4、创建短暂节点(短暂节点 + 不带序号 or 带序号)

(1)创建短暂的不带序号的节点

[zk: localhost:2181(CONNECTED) 7] create -e /sanguo/wuguo 
"zhouyu"
Created /sanguo/wuguo

(2)创建短暂的带序号的节点

[zk: localhost:2181(CONNECTED) 2] create -e -s /sanguo/wuguo 
"zhouyu"
Created /sanguo/wuguo0000000001

(3)在当前客户端是能查看到的

[zk: localhost:2181(CONNECTED) 3] ls /sanguo 
[wuguo, wuguo0000000001, shuguo]

(4)退出当前客户端然后再重启客户端

[zk: localhost:2181(CONNECTED) 12] quit
[atguigu@hadoop104 zookeeper-3.5.7]$ bin/zkCli.sh

(5)再次查看根目录下短暂节点已经删除

[zk: localhost:2181(CONNECTED) 0] ls /sanguo
[shuguo]

5、修改节点数据值

[zk: localhost:2181(CONNECTED) 6] set /sanguo/weiguo "simayi"

3.2.4 监听器原理

客户端注册监听它关心的目录节点,当目录节点发生变化(数据改变、节点删除、子目录节点增加删除)时,ZooKeeper 会通知客户端。监听机制保证 ZooKeeper 保存的任何的数据的任何改变都能快速的响应到监听了该节点的应用程序。

快速掌握zookeeper_第17张图片

1、节点的值变化监听

(1)在 hadoop104 主机上注册监听/sanguo 节点数据变化

[zk: localhost:2181(CONNECTED) 26] get -w /sanguo

(2)在 hadoop103 主机上修改/sanguo 节点的数据

[zk: localhost:2181(CONNECTED) 1] set /sanguo "xisi"

(3)观察 hadoop104 主机收到数据变化的监听

WATCHER::
WatchedEvent state:SyncConnected type:NodeDataChanged 
path:/sanguo

注意:在hadoop103再多次修改/sanguo的值,hadoop104上不会再收到监听。因为注册一次,只能监听一次。想再次监听,需要再次注册。

2、节点的子节点变化监听(路径变化)

(1)在 hadoop104 主机上注册监听/sanguo 节点的子节点变化

[zk: localhost:2181(CONNECTED) 1] ls -w /sanguo
[shuguo, weiguo]

(2)在 hadoop103 主机/sanguo 节点上创建子节点

[zk: localhost:2181(CONNECTED) 2] create /sanguo/jin "simayi"
Created /sanguo/jin

(3)观察 hadoop104 主机收到子节点变化的监听

WATCHER::
WatchedEvent state:SyncConnected type:NodeChildrenChanged 
path:/sanguo

注意:节点的路径变化,也是注册一次,生效一次。想多次生效,就需要多次注册。

3.2.5 节点删除与查看

1、删除节点

[zk: localhost:2181(CONNECTED) 4] delete /sanguo/jin

2、递归删除节点

[zk: localhost:2181(CONNECTED) 15] deleteall /sanguo/shuguo

3、查看节点状态

[zk: localhost:2181(CONNECTED) 17] stat /sanguo
cZxid = 0x100000003
ctime = Wed Aug 29 00:03:23 CST 2018
mZxid = 0x100000011
mtime = Wed Aug 29 00:21:23 CST 2018
pZxid = 0x100000014
cversion = 9
dataVersion = 1
aclVersion = 0
ephemeralOwner = 0x0
dataLength = 4
numChildren = 1

3.3 客户端API操作

前提:保证 hadoop102、hadoop103、hadoop104 服务器上 Zookeeper 集群服务端启动。

3.3.1 IDEA 环境搭建

**1 创建一个工程:**zookeeper

2 添加pom文件

<dependencies>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>RELEASE</version>
</dependency>
<dependency>
<groupId>org.apache.logging.log4j</groupId>
<artifactId>log4j-core</artifactId>
<version>2.8.2</version>
</dependency>
<dependency>
<groupId>org.apache.zookeeper</groupId>
<artifactId>zookeeper</artifactId>
<version>3.5.7</version>
</dependency>
</dependencies>

3 拷贝log4j.properties文件到项目根目录

需要在项目的 src/main/resources 目录下,新建一个文件,命名为“log4j.properties”,在文件中填入。

log4j.rootLogger=INFO, stdout 
log4j.appender.stdout=org.apache.log4j.ConsoleAppender 
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout 
log4j.appender.stdout.layout.ConversionPattern=%d %p [%c] 
- %m%n 
log4j.appender.logfile=org.apache.log4j.FileAppender 
log4j.appender.logfile.File=target/spring.log 
log4j.appender.logfile.layout=org.apache.log4j.PatternLayout 
log4j.appender.logfile.layout.ConversionPattern=%d %p [%c]

4 创建包名com.atguigu.zk

5 创建类名称zkClient

3.3.2 创建ZooKeeper客户端

// 注意:逗号前后不能有空格
private static String connectString =
"hadoop102:2181,hadoop103:2181,hadoop104:2181";
private static int sessionTimeout = 2000;
private ZooKeeper zkClient = null;
@Before
public void init() throws Exception {
zkClient = new ZooKeeper(connectString, sessionTimeout, new 
Watcher() {
@Override
public void process(WatchedEvent watchedEvent) {
// 收到事件通知后的回调函数(用户的业务逻辑)
System.out.println(watchedEvent.getType() + "--" 
+ watchedEvent.getPath());
// 再次启动监听
try {
List<String> children = zkClient.getChildren("/", 
true);
 for (String child : children) {
 System.out.println(child);
 }
    } catch (Exception e) {
e.printStackTrace();
} }
});
} }

3.3.3 创建子节点

// 创建子节点
@Test
public void create() throws Exception {
// 参数 1:要创建的节点的路径; 参数 2:节点数据 ; 参数 3:节点权限 ;
参数 4:节点的类型
String nodeCreated = zkClient.create("/atguigu", 
"shuaige".getBytes(), Ids.OPEN_ACL_UNSAFE,
CreateMode.PERSISTENT);
}

测试:在 hadoop102 的 zk 客户端上查看创建节点情况

[zk: localhost:2181(CONNECTED) 16] get -s /atguigu
shuaige

3.3.4 获取子节点并监听节点变化

// 获取子节点
@Test
public void getChildren() throws Exception {
List<String> children = zkClient.getChildren("/", true);
for (String child : children) {
System.out.println(child);
}
// 延时阻塞
Thread.sleep(Long.MAX_VALUE);
}

(1)在 IDEA 控制台上看到如下节点:

zookeeper
sanguo
atguigu

(2)在 hadoop102 的客户端上创建再创建一个节点/atguigu1,观察 IDEA 控制台

[zk: localhost:2181(CONNECTED) 3] create /atguigu1 "atguigu1"

(3)在 hadoop102 的客户端上删除节点/atguigu1,观察 IDEA 控制台

[zk: localhost:2181(CONNECTED) 4] delete /atguigu1

3.3.5 判断Znode是否存在

// 判断 znode 是否存在
@Test
public void exist() throws Exception {
    Stat stat = zkClient.exists("/atguigu", false);
System.out.println(stat == null ? "not exist" : "exist");
}

3.4 客户端向服务端写数据流程

写流程之写入请求直接发送给Leader节点

快速掌握zookeeper_第18张图片

写流程之写入请求发送给follower节点

快速掌握zookeeper_第19张图片

4、服务器动态上下线监听案例

4.1 需求

某分布式系统中,主节点可以有多台,可以动态上下线,任意一台客户端都能实时感知到主节点服务器的上下线。

4.2 需求分析

服务器动态上下线

快速掌握zookeeper_第20张图片

4.3 具体实现

(1)先在集群上创建/servers 节点

[zk: localhost:2181(CONNECTED) 10] create /servers "servers"
Created /servers

(2)在 Idea 中创建包名:com.atguigu.zkcase1

(3)服务器端向 Zookeeper 注册代码

package com.atguigu.zkcase1;
import java.io.IOException;
import org.apache.zookeeper.CreateMode;
import org.apache.zookeeper.WatchedEvent;
import org.apache.zookeeper.Watcher;
import org.apache.zookeeper.ZooKeeper;
import org.apache.zookeeper.ZooDefs.Ids;
public class DistributeServer {
private static String connectString = 
"hadoop102:2181,hadoop103:2181,hadoop104:2181";
private static int sessionTimeout = 2000;
private ZooKeeper zk = null;
private String parentNode = "/servers";
// 创建到 zk 的客户端连接
public void getConnect() throws IOException{
zk = new ZooKeeper(connectString, sessionTimeout, new 
Watcher() {
@Override
public void process(WatchedEvent event) {
 
}
});
}
// 注册服务器
public void registServer(String hostname) throws Exception{
String create = zk.create(parentNode + "/server", 
hostname.getBytes(), Ids.OPEN_ACL_UNSAFE, 
CreateMode.EPHEMERAL_SEQUENTIAL);
System.out.println(hostname +" is online "+ create);
}
// 业务功能
public void business(String hostname) throws Exception{
System.out.println(hostname + " is working ...");
Thread.sleep(Long.MAX_VALUE);
}
public static void main(String[] args) throws Exception {
// 1 获取 zk 连接
DistributeServer server = new DistributeServer();
server.getConnect();
// 2 利用 zk 连接注册服务器信息
server.registServer(args[0]);
// 3 启动业务功能
server.business(args[0]);
} }

(3)客户端代码

package com.atguigu.zkcase1;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import org.apache.zookeeper.WatchedEvent;
import org.apache.zookeeper.Watcher;
import org.apache.zookeeper.ZooKeeper;
public class DistributeClient {
private static String connectString = 
"hadoop102:2181,hadoop103:2181,hadoop104:2181";
private static int sessionTimeout = 2000;
private ZooKeeper zk = null;
private String parentNode = "/servers";
// 创建到 zk 的客户端连接
public void getConnect() throws IOException {
zk = new ZooKeeper(connectString, sessionTimeout, new 
Watcher() {
    @Override
public void process(WatchedEvent event) {
// 再次启动监听
try {
getServerList();
} catch (Exception e) {
e.printStackTrace();
} }
});
}
// 获取服务器列表信息
public void getServerList() throws Exception {
 // 1 获取服务器子节点信息,并且对父节点进行监听
List<String> children = zk.getChildren(parentNode, true);
 // 2 存储服务器信息列表
ArrayList<String> servers = new ArrayList<>();
 // 3 遍历所有节点,获取节点中的主机名称信息
for (String child : children) {
byte[] data = zk.getData(parentNode + "/" + child, 
false, null);
servers.add(new String(data));
}
 // 4 打印服务器列表信息
System.out.println(servers);
}
// 业务功能
public void business() throws Exception{
System.out.println("client is working ...");
Thread.sleep(Long.MAX_VALUE);
}
public static void main(String[] args) throws Exception {
// 1 获取 zk 连接
DistributeClient client = new DistributeClient();
client.getConnect();
// 2 获取 servers 的子节点信息,从中获取服务器信息列表
client.getServerList();
// 3 业务进程启动
client.business();
} }

4.4 测试

  1. 在 Linux 命令行上操作增加减少服务器

(1)启动 DistributeClient 客户端

(2)在 hadoop102 上 zk 的客户端/servers 目录上创建临时带序号节点

[zk: localhost:2181(CONNECTED) 1] create -e -s 
/servers/hadoop102 "hadoop102"
[zk: localhost:2181(CONNECTED) 2] create -e -s 
/servers/hadoop103 "hadoop103"

(3)观察 Idea 控制台变化

[hadoop102, hadoop103]

(4)执行删除操作

[zk: localhost:2181(CONNECTED) 8] delete 
/servers/hadoop1020000000000

(5)观察 Idea 控制台变化

[hadoop103]
  1. 在 Idea 上操作增加减少服务器

(1)启动 DistributeClient 客户端(如果已经启动过,不需要重启)

(2)启动 DistributeServer 服务

①点击 Edit Configurations…

②在弹出的窗口中(Program arguments)输入想启动的主机,例如,hadoop102

快速掌握zookeeper_第21张图片

③回到 DistributeServer 的 main 方 法 , 右 键 , 在 弹 出 的 窗 口 中 点 击 Run“DistributeServer.main()”

快速掌握zookeeper_第22张图片

④观察 DistributeServer 控制台,提示 hadoop102 is working

⑤观察 DistributeClient 控制台,提示 hadoop102 已经上线

5、 ZooKeeper 分布式锁案例

什么叫做分布式锁呢?

比如说"进程 1"在使用该资源的时候,会先去获得锁,"进程 1"获得锁以后会对该资源保持独占,这样其他进程就无法访问该资源,"进程 1"用完该资源以后就将锁释放掉,让其他进程来获得锁,那么通过这个锁机制,我们就能保证了分布式系统中多个进程能够有序的访问该临界资源。那么我们把这个分布式环境下的这个锁叫作分布式锁。

快速掌握zookeeper_第23张图片

5.1 原生Zookeeper实现分布式锁案例

1 分布式锁实现

package com.atguigu.lock2;
import org.apache.zookeeper.*;
import org.apache.zookeeper.data.Stat;
import java.io.IOException;
import java.util.Collections;
import java.util.List;
import java.util.concurrent.CountDownLatch;
public class DistributedLock {
 // zookeeper server 列表
 private String connectString = 
"hadoop102:2181,hadoop103:2181,hadoop104:2181";
 // 超时时间
 private int sessionTimeout = 2000;
 private ZooKeeper zk;
 private String rootNode = "locks";
 private String subNode = "seq-";
 // 当前 client 等待的子节点
 private String waitPath;
 //ZooKeeper 连接
 private CountDownLatch connectLatch = new CountDownLatch(1);
   //ZooKeeper 节点等待
 private CountDownLatch waitLatch = new CountDownLatch(1);
 // 当前 client 创建的子节点
 private String currentNode;
 // 和 zk 服务建立连接,并创建根节点
 public DistributedLock() throws IOException, 
InterruptedException, KeeperException {
 zk = new ZooKeeper(connectString, sessionTimeout, new 
Watcher() {
 @Override
 public void process(WatchedEvent event) {
 // 连接建立时, 打开 latch, 唤醒 wait 在该 latch 上的线程
 if (event.getState() == 
Event.KeeperState.SyncConnected) {
 connectLatch.countDown();
 }
 // 发生了 waitPath 的删除事件
 if (event.getType() == 
Event.EventType.NodeDeleted && event.getPath().equals(waitPath)) 
{
 waitLatch.countDown();
 }
 }
 });
 // 等待连接建立
 connectLatch.await();
 //获取根节点状态
 Stat stat = zk.exists("/" + rootNode, false);
 //如果根节点不存在,则创建根节点,根节点类型为永久节点
 if (stat == null) {
 System.out.println("根节点不存在");
 zk.create("/" + rootNode, new byte[0], 
ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.PERSISTENT);
 }
 }
 // 加锁方法
 public void zkLock() {
 try {
 //在根节点下创建临时顺序节点,返回值为创建的节点路径
 currentNode = zk.create("/" + rootNode + "/" + subNode, 
null, ZooDefs.Ids.OPEN_ACL_UNSAFE,
 CreateMode.EPHEMERAL_SEQUENTIAL);
 // wait 一小会, 让结果更清晰一些
 Thread.sleep(10);
 // 注意, 没有必要监听"/locks"的子节点的变化情况
     List<String> childrenNodes = zk.getChildren("/" + 
rootNode, false);
 // 列表中只有一个子节点, 那肯定就是 currentNode , 说明
client 获得锁
 if (childrenNodes.size() == 1) {
 return;
 } else {
 //对根节点下的所有临时顺序节点进行从小到大排序
 Collections.sort(childrenNodes);
 //当前节点名称
 String thisNode = currentNode.substring(("/" + 
rootNode + "/").length());
 //获取当前节点的位置
 int index = childrenNodes.indexOf(thisNode);
 if (index == -1) {
 System.out.println("数据异常");
 } else if (index == 0) {
 // index == 0, 说明 thisNode 在列表中最小, 当前
client 获得锁
 return;
 } else {
 // 获得排名比 currentNode 前 1 位的节点
 this.waitPath = "/" + rootNode + "/" + 
childrenNodes.get(index - 1);
 // 在 waitPath 上注册监听器, 当 waitPath 被删除时, 
zookeeper 会回调监听器的 process 方法
 zk.getData(waitPath, true, new Stat());
 //进入等待锁状态
 waitLatch.await();
 return;
 }
 }
 } catch (KeeperException e) {
 e.printStackTrace();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 // 解锁方法
 public void zkUnlock() {
 try {
 zk.delete(this.currentNode, -1);
 } catch (InterruptedException | KeeperException e) {
 e.printStackTrace();
 }
 } }

2 分布式锁测试

(1)创建两个线程

package com.atguigu.lock2;
import org.apache.zookeeper.KeeperException;
import java.io.IOException;
public class DistributedLockTest {
 public static void main(String[] args) throws 
InterruptedException, IOException, KeeperException {
 // 创建分布式锁 1
 final DistributedLock lock1 = new DistributedLock();
 // 创建分布式锁 2
 final DistributedLock lock2 = new DistributedLock();
 new Thread(new Runnable() {
 @Override
 public void run() {
 // 获取锁对象
 try {
 lock1.zkLock();
 System.out.println("线程 1 获取锁");
 Thread.sleep(5 * 1000);
 lock1.zkUnlock();
 System.out.println("线程 1 释放锁");
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 }).start();
 new Thread(new Runnable() {
 @Override
 public void run() {
 // 获取锁对象
 try {
 lock2.zkLock();
 System.out.println("线程 2 获取锁");
 Thread.sleep(5 * 1000);
 lock2.zkUnlock();
 System.out.println("线程 2 释放锁");
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 }).start();
 } }

(2)观察控制台变化:

线程 1 获取锁

(2)观察控制台变化:

线程 1 获取锁

5.2 Curator框架实现分布式锁案例

1 原生的 Java API 开发存在的问题

(1)会话连接是异步的,需要自己去处理。比如使用 CountDownLatch

(2)Watch 需要重复注册,不然就不能生效

(3)开发的复杂性还是比较高的

(4)不支持多节点删除和创建。需要自己去递归

2 Curator 是一个专门解决分布式锁的框架,解决了原生 JavaAPI开发分布式遇到的问题。

详情请查看官方文档:https://curator.apache.org/index.html

3 Curator案例实操

(1)添加依赖

<dependency>
 <groupId>org.apache.curator</groupId>
 <artifactId>curator-framework</artifactId>
 <version>4.3.0</version>
</dependency>
<dependency>
 <groupId>org.apache.curator</groupId>
 <artifactId>curator-recipes</artifactId>
 <version>4.3.0</version>
</dependency>
<dependency>
 <groupId>org.apache.curator</groupId>
 <artifactId>curator-client</artifactId>
 <version>4.3.0</version>
</dependency>

(2)代码实现

package com.atguigu.lock;
import org.apache.curator.RetryPolicy;
import org.apache.curator.framework.CuratorFramework;
import org.apache.curator.framework.CuratorFrameworkFactory;
import 
org.apache.curator.framework.recipes.locks.InterProcessLock;
import 
org.apache.curator.framework.recipes.locks.InterProcessMutex;
import org.apache.curator.retry.ExponentialBackoffRetry;
public class CuratorLockTest {
 private String rootNode = "/locks";
   // zookeeper server 列表
 private String connectString = 
"hadoop102:2181,hadoop103:2181,hadoop104:2181";
 // connection 超时时间
 private int connectionTimeout = 2000;
 // session 超时时间
 private int sessionTimeout = 2000;
 public static void main(String[] args) {
 new CuratorLockTest().test();
 }
 // 测试
 private void test() {
 // 创建分布式锁 1
 final InterProcessLock lock1 = new 
InterProcessMutex(getCuratorFramework(), rootNode);
 // 创建分布式锁 2
 final InterProcessLock lock2 = new 
InterProcessMutex(getCuratorFramework(), rootNode);
 new Thread(new Runnable() {
 @Override
 public void run() {
 // 获取锁对象
 try {
 lock1.acquire();
 System.out.println("线程 1 获取锁");
 // 测试锁重入
 lock1.acquire();
 System.out.println("线程 1 再次获取锁");
 Thread.sleep(5 * 1000);
 lock1.release();
 System.out.println("线程 1 释放锁");
 lock1.release();
 System.out.println("线程 1 再次释放锁");
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 }).start();
 new Thread(new Runnable() {
 @Override
 public void run() {
 // 获取锁对象
 try {
 lock2.acquire();
 System.out.println("线程 2 获取锁");
 // 测试锁重入
 lock2.acquire();
 System.out.println("线程 2 再次获取锁");
 Thread.sleep(5 * 1000);
 lock2.release();
 System.out.println("线程 2 释放锁");
 lock2.release();
 System.out.println("线程 2 再次释放锁");
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 }).start();
 }
 // 分布式锁初始化
 public CuratorFramework getCuratorFramework (){
 //重试策略,初试时间 3 秒,重试 3 次
 RetryPolicy policy = new ExponentialBackoffRetry(3000, 3);
 //通过工厂创建 Curator
 CuratorFramework client = 
CuratorFrameworkFactory.builder()
 .connectString(connectString)
 .connectionTimeoutMs(connectionTimeout)
 .sessionTimeoutMs(sessionTimeout)
 .retryPolicy(policy).build();
 //开启连接
 client.start();
 System.out.println("zookeeper 初始化完成...");
 return client;
 } }

(2)观察控制台变化:

线程 1 获取锁

线程 1 再次获取锁

线程 1 释放锁

线程 1 再次释放锁

线程 2 获取锁

线程 2 再次获取锁

线程 2 释放锁

线程 2 再次释放锁
本文是自己学习尚硅谷课程整理而成

你可能感兴趣的:(zookeeper,kafka,big,data)