卷积神经网络是什么意思,卷积神经网络英文缩写

cnn全称是什么?

CNN的全称是ConvolutionalNeuralNetwork,是一种前馈神经网络。由一个或多个卷积层、池化层以及顶部的全连接层组成,在图像处理领域表现出色。

本文主要讲解CNN如何在自然语言处理方面的运用。

卷积神经网络主要用于提取卷积对象的局部特征,当卷积对象是自然语言文本时,比如一个句子,此时其局部特征是特定的关键词或关键短语,所以利用卷积神经网络作为特征提取器时相当于词袋模型,表示一个句子中是否出现过特定的关键词或关键短语。

用在分类任务上,相当于提取出对于分类最有用的特征信息。

cnn简介:现在,CNN已经成为众多科学领域的研究热点之一,特别是在模式分类领域,由于该网络避免了对图像的复杂前期预处理,可以直接输入原始图像,因而得到了更为广泛的应用。

在图像处理中,往往把图像表示为像素的向量,比如一个1000×1000的图像,可以表示为一个1000000的向量。在上一节中提到的神经网络中,如果隐含层数目与输入层一样,即也是1000000时。

以上内容参考:百度百科-卷积神经网络。

谷歌人工智能写作项目:神经网络伪原创

卷积神经网络算法是什么?

一维构筑、二维构筑、全卷积构筑文案狗

卷积神经网络(ConvolutionalNeuralNetworks,CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(FeedforwardNeuralNetworks),是深度学习(deeplearning)的代表算法之一。

卷积神经网络具有表征学习(representationlearning)能力,能够按其阶层结构对输入信息进行平移不变分类(shift-invariantclassification),因此也被称为“平移不变人工神经网络(Shift-InvariantArtificialNeuralNetworks,SIANN)”。

卷积神经网络的连接性:卷积神经网络中卷积层间的连接被称为稀疏连接(sparseconnection),即相比于前馈神经网络中的全连接,卷积层中的神经元仅与其相邻层的部分,而非全部神经元相连。

具体地,卷积神经网络第l层特征图中的任意一个像素(神经元)都仅是l-1层中卷积核所定义的感受野内的像素的线性组合。

卷积神经网络的稀疏连接具有正则化的效果,提高了网络结构的稳定性和泛化能力,避免过度拟合,同时,稀疏连接减少了权重参数的总量,有利于神经网络的快速学习,和在计算时减少内存开销。

卷积神经网络中特征图同一通道内的所有像素共享一组卷积核权重系数,该性质被称为权重共享(weightsharing)。

权重共享将卷积神经网络和其它包含局部连接结构的神经网络相区分,后者虽然使用了稀疏连接,但不同连接的权重是不同的。权重共享和稀疏连接一样,减少了卷积神经网络的参数总量,并具有正则化的效果。

在全连接网络视角下,卷积神经网络的稀疏连接和权重共享可以被视为两个无限强的先验(pirior),即一个隐含层神经元在其感受野之外的所有权重系数恒为0(但感受野可以在空间移动);且在一个通道内,所有神经元的权重系数相同。

深度学习中的卷积网络到底怎么回事

这两个概念实际上是互相交叉的,例如,卷积神经网络(Convolutionalneuralnetworks,简称CNNs)就是一种深度的监督学习下的机器学习模型,而深度置信网(DeepBeliefNets,简称DBNs)就是一种无监督学习下的机器学习模型。

深度学习的概念源于人工神经网络的研究。含多隐层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。

深度学习的概念由Hinton等人于2006年提出。基于深信度网(DBN)提出非监督贪心逐层训练算法,为解决深层结构相关的优化难题带来希望,随后提出多层自动编码器深层结构。

此外Lecun等人提出的卷积神经网络是第一个真正多层结构学习算法,它利用空间相对关系减少参数数目以提高训练性能。

请问卷积神经网络的概念谁最早在学术界提出的?

福岛邦彦。2021年4月29日,福岛邦彦(KunihikoFukushima)获得2021年鲍尔科学成就奖。

他为深度学习做出了杰出贡献,其最有影响力的工作当属「Neocognitron」卷积神经网络架构。

其实,熟悉这位JürgenSchmidhuber人都知道,他此前一直对自己在深度学习领域的早期原创性成果未能得到业界广泛承认而耿耿于怀。

1979年,福岛博士在STRL开发了一种用于模式识别的神经网络模型:Neocognitron。很陌生对吧?

但这个Neocognitron用今天的话来说,叫卷积神经网络(CNN),是深度神经网络基本结构的最伟大发明之一,也是当前人工智能的核心技术。什么?

卷积神经网络不是一个叫YannLeCun的大佬发明的吗?怎么又换成了福岛邦彦(KunihikoFukushima)了?

严格意义上讲,LeCun是第一个使用误差反向传播训练卷积神经网络(CNN)架构的人,但他并不是第一个发明这个结构的人。

而福岛博士引入的Neocognitron,是第一个使用卷积和下采样的神经网络,也是卷积神经网络的雏形。

福岛邦彦(KunihikoFukushima)设计的具有学习能力的人工多层神经网络,可以模仿大脑的视觉网络,这种「洞察力」成为现代人工智能技术的基础。

福岛博士的工作带来了一系列实际应用,从自动驾驶汽车到面部识别,从癌症检测到洪水预测,还会有越来越多的应用。

有哪些深度神经网络模型

目前经常使用的深度神经网络模型主要有卷积神经网络(CNN)、递归神经网络(RNN)、深信度网络(DBN)、深度自动编码器(AutoEncoder)和生成对抗网络(GAN)等。

递归神经网络实际.上包含了两种神经网络。

一种是循环神经网络(RecurrentNeuralNetwork);另一种是结构递归神经网络(RecursiveNeuralNetwork),它使用相似的网络结构递归形成更加复杂的深度网络。

RNN它们都可以处理有序列的问题,比如时间序列等且RNN有“记忆”能力,可以“模拟”数据间的依赖关系。卷积网络的精髓就是适合处理结构化数据。

关于深度神经网络模型的相关学习,推荐CDA数据师的相关课程,课程以项目调动学员数据挖掘实用能力的场景式教学为主,在讲师设计的业务场景下由讲师不断提出业务问题,再由学员循序渐进思考并操作解决问题的过程中,帮助学员掌握真正过硬的解决业务问题的数据挖掘能力。

这种教学方式能够引发学员的独立思考及主观能动性,学员掌握的技能知识可以快速转化为自身能够灵活应用的技能,在面对不同场景时能够自由发挥。

类脑和卷积神经网络什么关系

一、“类脑”概念1.在早期,类脑一般是指从软硬件上模拟生物神经系统的结构与信息加工方式。随着软硬件技术的进步,以及神经科学与各种工程技术的多方面融合发展,脑与机的界限被逐步打破。

尤其是脑机接口,在计算机与生物脑之间建立了一条直接交流的信息通道,这为实现脑与机的双向交互、协同工作及一体化奠定了基础。随之,“类脑”的概念逐步从信息域自然地延伸到生命域。

因此,以脑机互联这一独特方式实现计算或智能,也被归入“类脑研究”范畴。

2.类脑研究是以“人造超级大脑”为目标,借鉴人脑的信息处理方式,模拟大脑神经系统,构建以数值计算为基础的虚拟超级脑;或通过脑机交互,将计算与生命体融合,构建以虚拟脑与生物脑为物质基础的脑机一体化的超级大脑,最终建立新型的计算结构与智能形态。

我们不妨将类脑的英文称为Cybrain(CyberneticBrain),即仿脑及融脑之意。

其主要特征包括:A.以信息为主要手段:用信息手段认识脑、模拟脑乃至融合脑;B.以人造超级大脑为核心目标:包括以计算仿脑为主的虚拟超级脑,以及虚拟脑与生物脑一体化的超级大脑这两种形态;C.以学科交叉会聚为突破方式:不单是计算机与神经科学交叉,还需要与微电子、材料、心理、物理、数学等大学科密切交叉会聚,才有更大机会取得突破。

3.类脑研究的主要内容:类脑研究要全面实现“懂脑、仿脑、连脑”,脑认知基础、类脑模拟、脑机互联三个方面缺一不可。

因此,我们将类脑研究主要内容归纳为三个方面:信息手段认识脑、计算方式模拟脑、脑机融合增强脑(见图1)。其中,信息技术贯穿始终。

二、卷积神经网络1.卷积神经网络(ConvolutionalNeuralNetworks,CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(FeedforwardNeuralNetworks),是深度学习(deeplearning)的代表算法之一。

2.卷积神经网络具有表征学习(representationlearning)能力,能够按其阶层结构对输入信息进行平移不变分类(shift-invariantclassification),因此也被称为“平移不变人工神经网络(Shift-InvariantArtificialNeuralNetworks,SIANN)” 。

3.对卷积神经网络的研究始于二十世纪80至90年代,时间延迟网络和LeNet-5是最早出现的卷积神经网络  。

在二十一世纪后,随着深度学习理论的提出和数值计算设备的改进,卷积神经网络得到了快速发展,并被应用于计算机视觉、自然语言处理等领域。

4.卷积神经网络仿造生物的视知觉(visualperception)机制构建,可以进行监督学习和非监督学习,其隐含层内的卷积核参数共享和层间连接的稀疏性使得卷积神经网络能够以较小的计算量对格点化(grid-liketopology)特征,例如像素和音频进行学习、有稳定的效果且对数据没有额外的特征工程(featureengineering)要求。

三、二者关系人工智能时代的到来,大数据可以提供给计算机对人脑的模拟训练,强大的算力可以支撑计算机能够充分利用大数据获得更多规律,进行知识的学习。

类脑智能做的面比较广,出发点是开发一个与人脑具有类似功能的模拟大脑出来,达到人类的智慧,深度学习只是其中的一个小小的分支,是对人脑研究的一个小成果,而类脑智能相对研究的比较宽泛和深入。

而卷积神经网络只是深度学习的代表算法之一。

CNN(卷积神经网络)是什么?

在数字图像处理的时候我们用卷积来滤波是因为我们用的卷积模版在频域上确实是高通低通带通等等物理意义上的滤波器。

然而在神经网络中,模版的参数是训练出来的,我认为是纯数学意义的东西,很难理解为在频域上还有什么意义,所以我不认为神经网络里的卷积有滤波的作用。接着谈一下个人的理解。

首先不管是不是卷积神经网络,只要是神经网络,本质上就是在用一层层简单的函数(不管是sigmoid还是Relu)来拟合一个极其复杂的函数,而拟合的过程就是通过一次次backpropagation来调参从而使代价函数最小。

 

你可能感兴趣的:(cnn,深度学习,神经网络)