目标分割算法之分水岭算法

1.分水岭实现原理

分水岭算法常用于目标分割研究,其将图像以灰度为参考可视化为一种拓扑地貌,灰度大小等价于海拔高低,如果向地貌中的山谷进行漫水,一定程度时山丘将被分开成独立个体
1.1基于降雨法实现分水岭
目标分割算法之分水岭算法_第1张图片
如上图所示,假设雨水从而给高出降落,最终在山谷聚集,不同的山谷被赋予不同颜色,然而,在不同颜色出现汇聚的地方,混合颜色的位置就可以修建大坝,将目标分割开

1.2基于灌水法实现分水岭
目标分割算法之分水岭算法_第2张图片
如上图所示平面图,从各个山谷挖个洞向上灌水(灌水位置对应局部极小值,伴随水位上升,不同山谷的水相遇时,就可以修建大坝

2.具体实现

附:opencv官方应用举例:
基于距离变换标记分水岭实现分割

const int SHED = -1;
const int INQUEUE = -2;

struct point2D {
	int r, c;
};


void WaterShed_(Mat & gray_img, cv::Mat & markers)
/*
 * gray_img: a 1 channel 8-bit img.
 * markers: different basins marked as different positive integers,
 *         other position is 0.(32-bit 1 channel img)
 *
 * return: watershed mask.(1 channel)
 */
{
	if (gray_img.channels() == 3)
	{
		cvtColor(gray_img, gray_img, COLOR_BGR2GRAY);
	}

	const int graylevelnum = 256;
	vector<queue<point2D>> queues;
	queues.reserve(graylevelnum);
	for (int i = 0; i < graylevelnum; i++)
	{
		queues.emplace_back(queue<point2D>());
	}
	//res设为输出标记图像
	int Rows = res.rows - 1, Cols = res.cols - 1;
	int *p = res.ptr<int>(0);
	for (int i = 0; i < res.cols; i++) { p[i] = SHED; }//第一行置为-1
	p = res.ptr<int>(Rows);
	for (int i = 0; i < res.cols; i++) { p[i] = SHED; }//最后一行置为-1

	for (int i = 1; i < Rows; i++)//当前res代表标记图像
	{
		int *res_p_pre = res.ptr<int >(i - 1);
		int *res_p_cur = res.ptr<int >(i);
		int *res_p_next = res.ptr<int >(i + 1);

		uchar *gray_p = gray.ptr<uchar >(i);
		res_p_cur[0] = SHED; res_p_cur[Cols] = SHED;//结果图第一列和最后一列置为-1
		for (int j = 1; j < Cols; j++)//遍历每一列
		{
			if (res_p_cur[j] < 0) { res_p_cur[j] = 0; }//?不存在<0的情况吧
			//check 4 neighbors.
			int intensity = graylevelnum;//强度初始化为256
			if (res_p_cur[j] == 0 && (res_p_pre[j] > 0 || res_p_next[j] > 0 
				|| res_p_cur[j - 1] > 0 || res_p_cur[j + 1] > 0))//如果标记当前点为0+左一点>0+右一点>0+上一点>0+下一点>0
			{ intensity = gray_p[j]; }   //强度置为标记点在原图的灰度
			if (intensity < graylevelnum) //如果小于256,保存到每个灰度级对应的容器中,将其视为将要操作的点,暂时灰度值设为-2
			{ queues[intensity].push({ i,j }); res_p_cur[j] = INQUEUE; }
		}
	}

	int ind = 0;
	for (; ind < graylevelnum; ind++)
	{
		if (!queues[ind].empty()) { break; }//找到第一个储存灰度级的不为空的容器索引
	}
	
	if (ind < graylevelnum)//如果小于最大灰度级
	{
		int lab, t;
		while (true)
		{
			if (queues[ind].empty())
			{
				for (; ind < graylevelnum; ind++)
				{
					if (!queues[ind].empty()) { break; }//灰度级遍历时也会出现大小为0的灰度级容器,跳过它找出下一个索引
				}
			}
			if (ind >= graylevelnum) { break; }

			point2D cur = queues[ind].front();//读取当前种子点
			queues[ind].pop();//删除栈顶元素

			//std::cout << ind << " " << cur.r << " " << cur.c << std::endl;

			//mark current pixel.获取label值,用于标记?
			lab = 0;
			t = res.at<int>(cur.r - 1, cur.c);//此处四邻域与上边记录四邻域点存邻域时保持一致
			if (t > 0) lab = t;
			t = res.at<int>(cur.r + 1, cur.c);//公共区域修建大坝?
			if (t > 0)
			{
				if (lab == 0) { lab = t; }
				else if (lab != t) { lab = SHED; }
			}
			t = res.at<int>(cur.r, cur.c - 1);
			if (t > 0)
			{
				if (lab == 0) { lab = t; }
				else if (lab != t) { lab = SHED; }
			}
			t = res.at<int>(cur.r, cur.c + 1);
			if (t > 0)
			{
				if (lab == 0) { lab = t; }
				else if (lab != t) { lab = SHED; }
			}

			assert(lab != 0);
			res.at<int>(cur.r, cur.c) = lab;//当前种子点在结果图像标记为lab
			//std::cout << "lab:" << lab << std::endl;

			if (lab != SHED)//如果标记不是大坝,应继续进行生长漫水==>将原始标记图中未标记的点压入容器进行标记
			{
				//check 4 neighbors for unmarked pixels.
				int r_ind = cur.r - 1, c_ind = cur.c;//r、c表示行与列
				if (res.at<int>(r_ind, c_ind) == 0)//未进行标记的点
				{
					t = gray.at<uchar >(r_ind, c_ind);
					//std::cout << "t:" << t << std::endl;
					queues[t].push({ r_ind,c_ind });
					res.at<int>(r_ind, c_ind) = INQUEUE;
					ind = ind < t ? ind : t;//ind为当前遍历的灰度级
				}
				r_ind = cur.r + 1; c_ind = cur.c;
				if (res.at<int>(r_ind, c_ind) == 0)
				{
					t = gray.at<uchar >(r_ind, c_ind);
					//std::cout << "t:" << t << std::endl;
					queues[t].push({ r_ind,c_ind });
					res.at<int>(r_ind, c_ind) = INQUEUE;
					ind = ind < t ? ind : t;
				}
				r_ind = cur.r; c_ind = cur.c - 1;
				if (res.at<int>(r_ind, c_ind) == 0)
				{
					t = gray.at<uchar >(r_ind, c_ind);
					//std::cout << "t:" << t << std::endl;
					queues[t].push({ r_ind,c_ind });
					res.at<int>(r_ind, c_ind) = INQUEUE;
					ind = ind < t ? ind : t;
				}
				r_ind = cur.r; c_ind = cur.c + 1;
				if (res.at<int>(r_ind, c_ind) == 0)
				{
					t = gray.at<uchar >(r_ind, c_ind);
					//std::cout << "t:" << t << std::endl;
					queues[t].push({ r_ind,c_ind });
					res.at<int>(r_ind, c_ind) = INQUEUE;
					ind = ind < t ? ind : t;
				}
			}
		}
	}

	markers = res.clone();
}

加入梯度图进行改进:

Mat sobel_x, sobel_y;
Sobel(gray_img, sobel_x, CV_64F, 1, 0, 3);
Sobel(gray_img, sobel_y, CV_64F, 0, 1, 3);
convertScaleAbs(sobel_x, sobel_x);
convertScaleAbs(sobel_y, sobel_y);
Mat grad = sobel_x + sobel_y;

针对梯度图中的背景点并进行操作

if (lab != SHED)//如果标记不是大坝,应继续进行生长漫水==>将原始标记图中未标记的点压入容器进行标记
			{
				//check 4 neighbors for unmarked pixels.
				int r_ind = cur.r - 1, c_ind = cur.c;//r、c表示行与列
				if (res.at<int>(r_ind, c_ind) == 0)//未进行标记的点
				{
					t = gray.at<uchar >(r_ind, c_ind);
					//std::cout << "t:" << t << std::endl;
					if (t != 0) {
						queues[t].push({ r_ind,c_ind });
						res.at<int>(r_ind, c_ind) = INQUEUE;
						ind = ind < t ? ind : t;//ind为当前遍历的灰度级
					}
					//queues[t].push({ r_ind,c_ind });
					//res.at(r_ind, c_ind) = INQUEUE;
					//ind = ind < t ? ind : t;//ind为当前遍历的灰度级
				}
				r_ind = cur.r + 1; c_ind = cur.c;
				if (res.at<int>(r_ind, c_ind) == 0)
				{
					t = gray.at<uchar >(r_ind, c_ind);
					//std::cout << "t:" << t << std::endl;
					if (t != 0) {
						queues[t].push({ r_ind,c_ind });
						res.at<int>(r_ind, c_ind) = INQUEUE;
						ind = ind < t ? ind : t;//ind为当前遍历的灰度级
					}
					/*queues[t].push({ r_ind,c_ind });
					res.at(r_ind, c_ind) = INQUEUE;
					ind = ind < t ? ind : t;*/
				}
				r_ind = cur.r; c_ind = cur.c - 1;
				if (res.at<int>(r_ind, c_ind) == 0)
				{
					t = gray.at<uchar >(r_ind, c_ind);
					//std::cout << "t:" << t << std::endl;
					if (t != 0) {
						queues[t].push({ r_ind,c_ind });
						res.at<int>(r_ind, c_ind) = INQUEUE;
						ind = ind < t ? ind : t;//ind为当前遍历的灰度级
					}
					/*queues[t].push({ r_ind,c_ind });
					res.at(r_ind, c_ind) = INQUEUE;
					ind = ind < t ? ind : t;*/
				}
				r_ind = cur.r; c_ind = cur.c + 1;
				if (res.at<int>(r_ind, c_ind) == 0)
				{
					t = gray.at<uchar >(r_ind, c_ind);
					//std::cout << "t:" << t << std::endl;
					if (t != 0) {
						queues[t].push({ r_ind,c_ind });
						res.at<int>(r_ind, c_ind) = INQUEUE;
						ind = ind < t ? ind : t;//ind为当前遍历的灰度级
					}
					/*queues[t].push({ r_ind,c_ind });
					res.at(r_ind, c_ind) = INQUEUE;
					ind = ind < t ? ind : t;*/
				}
}
		

主程序:

static void help(char** argv)
{
	cout << "\nThis program demonstrates the famous watershed segmentation algorithm in OpenCV: watershed()\n"
		"Usage:\n" << argv[0] << " [image_name -- default is fruits.jpg]\n" << endl;
	cout << "Hot keys: \n"
		"\tESC - quit the program\n"
		"\tr - restore the original image\n"
		"\tw or SPACE - run watershed segmentation algorithm\n"
		"\t\t(before running it, *roughly* mark the areas to segment on the image)\n"
		"\t  (before that, roughly outline several markers on the image)\n";
}
Mat markerMask, img;
Point prevPt(-1, -1);
static void onMouse(int event, int x, int y, int flags, void*)
{
	if (x < 0 || x >= img.cols || y < 0 || y >= img.rows)
		return;
	if (event == EVENT_LBUTTONUP || !(flags & EVENT_FLAG_LBUTTON))
		prevPt = Point(-1, -1);
	else if (event == EVENT_LBUTTONDOWN)
		prevPt = Point(x, y);
	else if (event == EVENT_MOUSEMOVE && (flags & EVENT_FLAG_LBUTTON))
	{
		Point pt(x, y);
		if (prevPt.x < 0)
			prevPt = pt;
		line(markerMask, prevPt, pt, Scalar(12,234,12), 40, 8, 0);
		line(img, prevPt, pt, Scalar(12,234,12), 40, 8, 0);
		prevPt = pt;
		imshow("image", img);
	}
}
int main(int argc, char** argv)
{
	cv::CommandLineParser parser(argc, argv, "{help h | | }{ @input | fruits.jpg | }");
	if (parser.has("help"))
	{
		help(argv);
		return 0;
	}
	//string filename = samples::findFile(parser.get("@input"));
	Mat img0 = imread("..."), imgGray;
	if (img0.empty())
	{
		cout << "Couldn't open image ";
		help(argv);
		return 0;
	}
	help(argv);
	//img0 = img0(Rect(1000, 1000, 800, 800));
	namedWindow("image", WINDOW_NORMAL);
	img0.copyTo(img);
	cvtColor(img, markerMask, COLOR_BGR2GRAY);
	cvtColor(markerMask, imgGray, COLOR_GRAY2BGR);
	markerMask = Scalar::all(0);
	imshow("image", img);
	setMouseCallback("image", onMouse, 0);
	for (;;)
	{
		char c = (char)waitKey(0);
		if (c == 27)
			break;
		if (c == 'r')
		{
			markerMask = Scalar::all(0);
			img0.copyTo(img);
			namedWindow("image", WINDOW_NORMAL);
			imshow("image", img);
		}
		if (c == 'w' || c == ' ')
		{
			int i, j, compCount = 0;
			vector<vector<Point> > contours;
			vector<Vec4i> hierarchy;
			findContours(markerMask, contours, hierarchy, RETR_CCOMP, CHAIN_APPROX_SIMPLE);
			if (contours.empty())
				continue;
			Mat markers(markerMask.size(), CV_32S);
			markers = Scalar::all(0);
			int idx = 0;
			for (; idx >= 0; idx = hierarchy[idx][0], compCount++)
				drawContours(markers, contours, idx, Scalar::all(compCount + 1), -1, 8, hierarchy, INT_MAX);
			if (compCount == 0)
				continue;
			vector<Vec3b> colorTab;
			for (i = 0; i < compCount; i++)
			{
				int b = theRNG().uniform(0, 255);
				int g = theRNG().uniform(0, 255);
				int r = theRNG().uniform(0, 255);
				colorTab.push_back(Vec3b((uchar)b, (uchar)g, (uchar)r));
			}
			double t = (double)getTickCount();
			medianBlur(img0, img0, 7);
			//watershed(img0, markers);
			//myWatered(img0, markers);
			//myWaterThred(img0, markers);
			WaterShed_(img0, markers);
			//imgseg::watershedColor(img0, markers);
			//imgseg::vfWatershed(img0, markers);
			t = (double)getTickCount() - t;
			printf("execution time = %gms\n", t*1000. / getTickFrequency());
			Mat wshed(markers.size(), CV_8UC3);
			// paint the watershed image
			for (i = 0; i < markers.rows; i++)
				for (j = 0; j < markers.cols; j++)
				{
					int index = markers.at<int>(i, j);
					if (index == -1)
						wshed.at<Vec3b>(i, j) = Vec3b(255, 255, 255);
					else if (index <= 0 || index > compCount)
						wshed.at<Vec3b>(i, j) = Vec3b(0, 0, 0);
					else
						wshed.at<Vec3b>(i, j) = colorTab[index - 1];
				}
			wshed = wshed * 0.5 + imgGray * 0.5;
			namedWindow("watershed transform", WINDOW_NORMAL);
			imshow("watershed transform", wshed);
		}
	}
	return 0;
}

主要参考:出自—会飞的吴克

你可能感兴趣的:(图像处理相关算法,#,C++,-,opencv,算法,计算机视觉,opencv)