ClickHouse集群搭建部署

文章目录

  • 一、单机版安装和启停
  • 二、集群部署搭建
    • 1、手动搭建clickhouse集群
    • 2、使用docker-compose快速搭建clickhouse集群
  • 三、集群扩容
    • 如何保证扩容后的数据均匀分布?
  • 四、集群缩容
  • docker-compose 中的一些文件

一、单机版安装和启停

单机版的安装相对简单,官网介绍了好几种办法:

https://clickhouse.com/docs/zh/getting-started/install/

这里提一下tgz安装包的方式,目前官网的文档有点问题(不知道将来会不会更新)。从21.2.xx之后的版本的相关tgz包已经移到 https://repo.clickhouse.com/tgz/stable/ 下面了,官方文档的curl拉的路径全部都是https://repo.clickhouse.com/tgz。另外,如果通过官网的命令获取最新版本,甚至在 https://repo.clickhouse.com/tgz/stable/ 下可能都找不到对应的tgz包,遇到这种情况,我们可以自行找一个合适的版本下载

#获取最新版本的clickhouse
export LATEST_VERSION=`curl https://api.github.com/repos/ClickHouse/ClickHouse/tags 2>/dev/null | grep -Eo '[0-9]+\.[0-9]+\.[0-9]+\.[0-9]+' | head -n 1`
#如果最新版本下载不到,可以获取指定版本的clickhouse
export LATEST_VERSION=21.12.3.32
#21.2.xx 之后的tgz包路径变成https://repo.clickhouse.com/tgz/stable下
#21.2.xx 之前的还在https://repo.clickhouse.com/tgz下
curl -O https://repo.clickhouse.com/tgz/stable/clickhouse-common-static-$LATEST_VERSION.tgz
curl -O https://repo.clickhouse.com/tgz/stable/clickhouse-common-static-dbg-$LATEST_VERSION.tgz
curl -O https://repo.clickhouse.com/tgz/stable/clickhouse-server-$LATEST_VERSION.tgz
curl -O https://repo.clickhouse.com/tgz/stable/clickhouse-client-$LATEST_VERSION.tgz
 
tar -xzvf clickhouse-common-static-$LATEST_VERSION.tgz
sudo clickhouse-common-static-$LATEST_VERSION/install/doinst.sh
 
tar -xzvf clickhouse-common-static-dbg-$LATEST_VERSION.tgz
sudo clickhouse-common-static-dbg-$LATEST_VERSION/install/doinst.sh
 
tar -xzvf clickhouse-server-$LATEST_VERSION.tgz
sudo clickhouse-server-$LATEST_VERSION/install/doinst.sh
sudo /etc/init.d/clickhouse-server start
 
tar -xzvf clickhouse-client-$LATEST_VERSION.tgz
sudo clickhouse-client-$LATEST_VERSION/install/doinst.sh

启动/关闭clickhouse服务:

clickhouse start
clickhouse stop

clickhouse安装完之后会注册linux服务,因此也可以通过linux系统服务来启停clickhouse:

#注意!如果使用linux系统服务启动clickhouse,后面不能用clickhouse stop来关闭,不然系统会重新拉起clickhouse
/etc/init.d/clickhouse-server start
/etc/init.d/clickhouse-server stop

安装完测试连通性:

clickhouse client --port 9000

二、集群部署搭建

1、手动搭建clickhouse集群

clickhouse 集群是非主从结构,各个节点是相互独立的。因此,和hdfs、yarn的集群不同,我们可以根据配置,灵活的配置集群,甚至可以将一个节点同时分配给多个集群。

clickhouse集群的概念主要就是用于分布式表和表的副本

ClickHouse集群搭建部署_第1张图片

上面这张图有3个节点,这3个节点组成了2个集群。

想要配置集群,需要在 /etc/clickhouse-server/config.xml的 标签下添加相关集群信息。或者在/etc/metrika.xml中进行配置。

如果要在 /etc/metrika.xml 中配置,需要确保metrika.xml已经被config.xml包含进去了:

remote_servers记得加incl属性

/etc/metrika.xml config.xml 将metrika.xml包含进来

要实现上图的集群架构,ck1、ck2、ck3的/etc/metrika.xml配置分别如下:

ck1配置:

<yandex>
    <clickhouse_remote_servers>
        
        <test_cluster1>
            
            <shard>
                
                <replica>
                    <host>ck1host>
                    <port>9000port>
                replica>
            shard>
            <shard>
                <replica>
                    <host>ck2host>
                    <port>9000port>
                replica>
            shard>
        test_cluster1>
    clickhouse_remote_servers>
 
    <zookeeper-servers>
        <node index="1">
            <host>zk1host>
            <port>2181port>
        node>
    zookeeper-servers>
yandex>

ck2配置:

<yandex>
  <clickhouse_remote_servers>
    <test_cluster1>
      <shard>
        <replica>
          <host>ck1host>
          <port>9000port>
        replica>
      shard>
      <shard>
        <replica>
          <host>ck2host>
          <port>9000port>
        replica>
      shard>
    test_cluster1>
    <test_cluster2>
      <shard>
        <replica>
          <host>ck2host>
          <port>9000port>
        replica>
      shard>
      <shard>
        <replica>
          <host>ck3host>
          <port>9000port>
        replica>
      shard>
    test_cluster2>
  clickhouse_remote_servers>
 
  <zookeeper-servers>
    <node index="1">
      <host>zk1host>
      <port>2181port>
    node>
  zookeeper-servers>
 
yandex>

ck3配置:

<yandex>
  <clickhouse_remote_servers>
    <test_cluster2>
      <shard>
        <replica>
          <host>ck2</host>
          <port>9000</port>
        </replica>
      </shard>
      <shard>
        <replica>
          <host>ck3</host>
          <port>9000</port>
        </replica>
      </shard>
    </test_cluster2>
  </clickhouse_remote_servers>
 
  <zookeeper-servers>
    <node index="1">
      <host>zk1</host>
      <port>2181</port>
    </node>
  </zookeeper-servers>
 
</yandex>

配置完之后,无需重启clickhouse服务,clickhouse会热加载这些配置。我们可以分别登陆这3台clickhouse,通过 select * from system.clusters; 查看当前节点所属集群的相关信息:

配置好集群之后,我们就可以基于配置好的集群创建分布式表了:

--在集群test_cluster1上的各个节点创建test表(也就是ck1、ck2)
create table default.test on cluster test_cluster1(id Int8,name String) engine = MergeTree order by id;
--基于test_cluster1创建分布式表
create table test_all as test engine =Distributed(test_cluster1,default,replicaTest,rand());

2、使用docker-compose快速搭建clickhouse集群

当集群机器数量众多,一台一台操作会非常麻烦。另外,如果我们手上没有服务器,又想深入研究clickhouse集群的一些特性时,就可以通过docker快速的搭建起clickhouse集群。

这里简单介绍一下docker-compose,docker-compose会根据定义好的配置文件帮我们启动多个docker container,省去我们一个个容器的操作工作。

下面的docker-compose.yaml是我经常用来快速搭建一个clickhouse集群的docker-compose配置文件:

version: "3.7"
 
services:
  ck1:
    image: yandex/clickhouse-server
    ulimits:
      nofile:
        soft: 300001
        hard: 300002
    ports:
      - 9001:9000
    volumes:
      - ./conf/config.xml:/etc/clickhouse-server/config.xml
      - ./conf/users.xml:/etc/clickhouse-server/users.xml
      - ./conf/metrika1.xml:/etc/metrika.xml
    links:
      - "zk1"
    depends_on:
      - zk1
 
  ck2:
    image: yandex/clickhouse-server
    ulimits:
      nofile:
        soft: 300001
        hard: 300002
    volumes:
      - ./conf/metrika2.xml:/etc/metrika.xml
      - ./conf/config.xml:/etc/clickhouse-server/config.xml
      - ./conf/users.xml:/etc/clickhouse-server/users.xml
    ports:
      - 9002:9000
    depends_on:
      - zk1
 
  ck3:
    image: yandex/clickhouse-server
    ulimits:
      nofile:
        soft: 300001
        hard: 300002
    volumes:
      - ./conf/metrika3.xml:/etc/metrika.xml
      - ./conf/config.xml:/etc/clickhouse-server/config.xml
      - ./conf/users.xml:/etc/clickhouse-server/users.xml
    ports:
      - 9003:9000
    depends_on:
      - zk1
 
  zk1:
    image: zookeeper
    restart: always
    hostname: zk1
    expose:
      - "2181"
    ports:
      - 2181:2181

上面的配置文件定义了4个容器,其中3个容器分别运行clickhouse服务,1个容器运行zookeeper服务。

配置后docker-compose.yaml后,进入该配置文件的目录,执行 docker-compose up -d 就会一起启动这些容器,clickhouse集群也就快速搭建好了。通过docker-compose down可以卸载集群。

上面docker-compose.yaml中引入的./conf/users.xml、./conf/config.xml、./conf/metrika.xml 等内容会在本博客的最后贴出。

ClickHouse集群搭建部署_第2张图片

三、集群扩容

假设当前有个集群test_cluster,有两个节点,该集群下面有张test表。集群配置如下:

<test_cluster>
      <shard>
        <internal_replication>trueinternal_replication>
        <replica>
          <host>ck1host>
          <port>9000port>
        replica>
      shard>
      <shard>
        <internal_replication>trueinternal_replication>
        <replica>
          <host>ck2host>
          <port>9000port>
        replica>
      shard>
test_cluster>

test表的相关创建语句:

--在集群各个节点创建test表
create table default.test on cluster test_cluster(id Int8,name String) engine = MergeTree order by id;
--在某个节点创建分布式表
create table test_all as test engine =Distributed(test_cluster,default,replicaTest,rand());
--写入若干数据
insert into test_all values(1,'zhang'),(2,'li'),(3,'zhao'),(4,'qian'),(5,'sun'),(6,'wang'),(7,'tian'),(8,'he'),(9,'zheng'),(10,'dong');

之后我们想往这个test_cluster新增一个节点。扩容的步骤大概如下:

ClickHouse集群搭建部署_第3张图片

1、在新节点安装clickhouse,进行配置(加上原有集群的相关配置)
编辑新节点的/etc/metrika.xml (ck3为新节点):

<yandex>
  <clickhouse_remote_servers>
    <test_cluster>
      <shard>
        <internal_replication>trueinternal_replication>
        <replica>
          <host>ck1host>
          <port>9000port>
        replica>
      shard>
      <shard>
        <internal_replication>trueinternal_replication>
        <replica>
          <host>ck2host>
          <port>9000port>
        replica>
      shard>
      <shard>
        <internal_replication>trueinternal_replication>
        <replica>
          <host>ck3host>
          <port>9000port>
        replica>
      shard>
    test_cluster>
  clickhouse_remote_servers>
 
  <zookeeper-servers>
    <node index="1">
      <host>zk1host>
      <port>2181port>
    node>
  zookeeper-servers>
 
yandex>

2、在新节点新建该集群的相关本地表
因为test_cluster集群下面只有一张test表,因此我们只要在新节点下创建test表即可:

--创建test表,结果就是ck1、ck2、ck3都有test表
create table if not exists default.test on cluster test_cluster(id Int8,name String) engine = MergeTree order by id;

3、修改集群旧节点的config.xml配置,加上新节点
在ck1、ck2的/etc/metrika.xml中全部加上ck3的配置:

<yandex>
  <clickhouse_remote_servers>
    <test_cluster>
      <shard>
        <internal_replication>trueinternal_replication>
        <replica>
          <host>ck1host>
          <port>9000port>
        replica>
      shard>
      <shard>
        <internal_replication>trueinternal_replication>
        <replica>
          <host>ck2host>
          <port>9000port>
        replica>
      shard>
      <shard>
        <internal_replication>trueinternal_replication>
        <replica>
          <host>ck3host>
          <port>9000port>
        replica>
      shard>
    test_cluster>
  clickhouse_remote_servers>
 
  <zookeeper-servers>
    <node index="1">
      <host>zk1host>
      <port>2181port>
    node>
  zookeeper-servers>
 
yandex>

修改完配置文件后,因为clickhouse会自动感知到config文件变化,因此我们修改的内容会马上生效。

后面可以通过下面的方式验证是否扩容成功:

--在ck1、ck2查询system.clusters表,看ck3是否已经加进来了
select * from system.clusters
--往之前创建的分布式表test_all表中再插入若干数据
insert into test_all values(1,'zhang'),(2,'li'),(3,'zhao'),(4,'qian'),(5,'sun'),(6,'wang'),(7,'tian'),(8,'he'),(9,'zheng'),(10,'dong');
--去ck3查看是否有数据写入
select * from test

4、通知客户端更新节点列表

如何保证扩容后的数据均匀分布?

根据写入的场景我们可以分开分析:

1、数据是通过分布式表来写入

这种情况,我们可以通过设置集群的权重,让后面的数据优先写入新节点,比如:

<yandex>
  <clickhouse_remote_servers>
    <test_cluster>
      <shard>
        <weight>1weight>
        <internal_replication>trueinternal_replication>
        <replica>
          <host>ck1host>
          <port>9000port>
        replica>
      shard>
      <shard>
        <weight>1weight>
        <internal_replication>trueinternal_replication>
        <replica>
          <host>ck2host>
          <port>9000port>
        replica>
      shard>
      <shard>
        <weight>99weight>
        <internal_replication>trueinternal_replication>
        <replica>
          <host>ck3host>
          <port>9000port>
        replica>
      shard>
    test_cluster>
  clickhouse_remote_servers>
 
  <zookeeper-servers>
    <node index="1">
      <host>zk1host>
      <port>2181port>
    node>
  zookeeper-servers>
 
yandex>

将ck1、ck2的权重都设置为1,ck3的权重设置为99,这样后面写入的数据大部分都会写入到ck3中。等到ck3的数据差不多和ck1、ck2持平了,再将权重改成一样

2、数据是在客户端层面直接往各个节点的本地表写入

这种情况就需要稍微改造下客户端的程序,让客户端可以优先选择新节点的本地表进行数据写入,直到各个节点的数据平衡

四、集群缩容

假设当前有个集群test_cluster,有三个节点,该集群下面有张test表。集群配置如下

<yandex>
  <clickhouse_remote_servers>
    <test_cluster>
      <shard>
        <internal_replication>true</internal_replication>
        <replica>
          <host>ck1</host>
          <port>9000</port>
        </replica>
      </shard>
      <shard>
        <internal_replication>true</internal_replication>
        <replica>
          <host>ck2</host>
          <port>9000</port>
        </replica>
      </shard>
      <shard>
        <internal_replication>true</internal_replication>
        <replica>
          <host>ck3</host>
          <port>9000</port>
        </replica>
      </shard>
    </test_cluster>
  </clickhouse_remote_servers>
 
  <zookeeper-servers>
    <node index="1">
      <host>zk1</host>
      <port>2181</port>
    </node>
  </zookeeper-servers>
</yandex>

现在我们需要下掉一个节点(ck3),大概需要进行以下步骤:

ClickHouse集群搭建部署_第4张图片

1、对外停止服务

防止操作过程中客户端读取到的数据不完整

2、转移要下线节点的数据

这里需要将要下线节点的数据转移到其他的节点去,数据迁移可以使用以下方式:

--在ck1执行下面的sql,将ck3的部分数据写到ck1的本地表中
insert into replicaTest select * from remote('ck3:9000','default','replicaTest','default') where id % 2 = 0;
--在ck2执行下面的sql,将ck3的部分数据写到ck2的本地表中
insert into replicaTest select * from remote('ck3:9000','default','replicaTest','default') where id % 2 = 1;

执行完上面的sql后,ck3的数据就迁移到ck1、ck2中去了

3、修改剩余节点的集群配置

在ck1、ck2的config.xml配置文件中去除ck3的配置:

<yandex>
  <clickhouse_remote_servers>
    <test_cluster>
      <shard>
        <internal_replication>trueinternal_replication>
        <replica>
          <host>ck1host>
          <port>9000port>
        replica>
      shard>
      <shard>
        <internal_replication>trueinternal_replication>
        <replica>
          <host>ck2host>
          <port>9000port>
        replica>
      shard>
    test_cluster>
  clickhouse_remote_servers>
 
  <zookeeper-servers>
    <node index="1">
      <host>zk1host>
      <port>2181port>
    node>
  zookeeper-servers>
yandex>

4、通知客户端更新节点列表

docker-compose 中的一些文件

users.xml :


<clickhouse>
    
    <profiles>
        
        <default>
            
            <max_memory_usage>10000000000max_memory_usage>


            
            <load_balancing>randomload_balancing>
            <allow_ddl>1allow_ddl>
            <readonly>0readonly>
        default>

        
        <readonly>
            <readonly>1readonly>
        readonly>
    profiles>

    
    <users>
        
        <default>
		<access_management>1access_management>
            <password>password>

            <networks>
                <ip>::/0ip>
            networks>

            
            <profile>defaultprofile>

            
            <quota>defaultquota>

            
            
        default>
	<test>
	    <password>password>
	    <quota>defaultquota>
            <profile>defaultprofile>
	    <allow_databases>
	        <database>defaultdatabase>
                <database>test_dictionariesdatabase>allow_databases>
            <allow_dictionaries>
	        <dictionary>replicaTest_alldictionary>
            allow_dictionaries>
	test>
    users>

    
    <quotas>
        
        <default>
            
            <interval>
                
                <duration>3600duration>

                
                <queries>0queries>
                <errors>0errors>
                <result_rows>0result_rows>
                <read_rows>0read_rows>
                <execution_time>0execution_time>
            interval>
        default>
    quotas>
clickhouse>

config.xml:



<clickhouse>
    <logger>
        <level>tracelevel>
        <log>/var/log/clickhouse-server/clickhouse-server.loglog>
        <errorlog>/var/log/clickhouse-server/clickhouse-server.err.logerrorlog>
        <size>1000Msize>
        <count>10count>
    logger>

    <http_port>8123http_port>
    <tcp_port>9000tcp_port>
    <mysql_port>9004mysql_port>
    <postgresql_port>9005postgresql_port>
    <interserver_http_port>9009interserver_http_port>
    <max_connections>4096max_connections>
    <keep_alive_timeout>3keep_alive_timeout>
    <grpc>
        <enable_ssl>falseenable_ssl>
        <ssl_cert_file>/path/to/ssl_cert_filessl_cert_file>
        <ssl_key_file>/path/to/ssl_key_filessl_key_file>
        <ssl_require_client_auth>falsessl_require_client_auth>
        <ssl_ca_cert_file>/path/to/ssl_ca_cert_filessl_ca_cert_file>
        <compression>deflatecompression>
        <compression_level>mediumcompression_level>
        <max_send_message_size>-1max_send_message_size>
        <max_receive_message_size>-1max_receive_message_size>
        <verbose_logs>falseverbose_logs>
    grpc>
    <openSSL>
        <server>
            <certificateFile>/etc/clickhouse-server/server.crtcertificateFile>
            <privateKeyFile>/etc/clickhouse-server/server.keyprivateKeyFile>
            <dhParamsFile>/etc/clickhouse-server/dhparam.pemdhParamsFile>
            <verificationMode>noneverificationMode>
            <loadDefaultCAFile>trueloadDefaultCAFile>
            <cacheSessions>truecacheSessions>
            <disableProtocols>sslv2,sslv3disableProtocols>
            <preferServerCiphers>truepreferServerCiphers>
        server>

        <client> 
            <loadDefaultCAFile>trueloadDefaultCAFile>
            <cacheSessions>truecacheSessions>
            <disableProtocols>sslv2,sslv3disableProtocols>
            <preferServerCiphers>truepreferServerCiphers>
            <invalidCertificateHandler>
                <name>RejectCertificateHandlername>
            invalidCertificateHandler>
        client>
    openSSL>
    <max_concurrent_queries>100max_concurrent_queries>
    <max_server_memory_usage>0max_server_memory_usage>
    <max_thread_pool_size>10000max_thread_pool_size>
    <max_server_memory_usage_to_ram_ratio>0.9max_server_memory_usage_to_ram_ratio>
    <total_memory_profiler_step>4194304total_memory_profiler_step>

    <total_memory_tracker_sample_probability>0total_memory_tracker_sample_probability>
    <uncompressed_cache_size>8589934592uncompressed_cache_size>
    <mark_cache_size>5368709120mark_cache_size>
    <mmap_cache_size>1000mmap_cache_size>
    <compiled_expression_cache_size>134217728compiled_expression_cache_size>
    <compiled_expression_cache_elements_size>10000compiled_expression_cache_elements_size>
    <path>/var/lib/clickhouse/path>
    <tmp_path>/var/lib/clickhouse/tmp/tmp_path>
    <user_files_path>/var/lib/clickhouse/user_files/user_files_path>
    <ldap_servers>
    ldap_servers>
    <user_directories>
        <users_xml>
            <path>users.xmlpath>
        users_xml>
        <local_directory>
            <path>/var/lib/clickhouse/access/path>
        local_directory>
    user_directories>
    <default_profile>defaultdefault_profile>
    <custom_settings_prefixes>custom_settings_prefixes>
    <default_database>defaultdefault_database>
    <mlock_executable>truemlock_executable>
    <remap_executable>falseremap_executable>

    ' | sed -e 's|.*>\(.*\)<.*|\1|')
           wget https://github.com/ClickHouse/clickhouse-jdbc-bridge/releases/download/v$PKG_VER/clickhouse-jdbc-bridge_$PKG_VER-1_all.deb
           apt install --no-install-recommends -f ./clickhouse-jdbc-bridge_$PKG_VER-1_all.deb
           clickhouse-jdbc-bridge &

         * [CentOS/RHEL]
           export MVN_URL=https://repo1.maven.org/maven2/ru/yandex/clickhouse/clickhouse-jdbc-bridge
           export PKG_VER=$(curl -sL $MVN_URL/maven-metadata.xml | grep '' | sed -e 's|.*>\(.*\)<.*|\1|')
           wget https://github.com/ClickHouse/clickhouse-jdbc-bridge/releases/download/v$PKG_VER/clickhouse-jdbc-bridge-$PKG_VER-1.noarch.rpm
           yum localinstall -y clickhouse-jdbc-bridge-$PKG_VER-1.noarch.rpm
           clickhouse-jdbc-bridge &

         Please refer to https://github.com/ClickHouse/clickhouse-jdbc-bridge#usage for more information.
    ]]>
    <remote_servers incl="clickhouse_remote_servers">
        <test_unavailable_shard>
            <shard>
                <replica>
                    <host>localhosthost>
                    <port>9000port>
                replica>
            shard>
            <shard>
                <replica>
                    <host>localhosthost>
                    <port>1port>
                replica>
            shard>
        test_unavailable_shard>
    remote_servers>

    <zookeeper incl="zookeeper-servers">
    zookeeper>
    <builtin_dictionaries_reload_interval>3600builtin_dictionaries_reload_interval>
    <max_session_timeout>3600max_session_timeout>
    <default_session_timeout>60default_session_timeout>
    <query_log>
        <database>systemdatabase>
        <table>query_logtable>
        <partition_by>toYYYYMM(event_date)partition_by>
        <flush_interval_milliseconds>7500flush_interval_milliseconds>
    query_log>
    <trace_log>
        <database>systemdatabase>
        <table>trace_logtable>

        <partition_by>toYYYYMM(event_date)partition_by>
        <flush_interval_milliseconds>7500flush_interval_milliseconds>
    trace_log>
    <query_thread_log>
        <database>systemdatabase>
        <table>query_thread_logtable>
        <partition_by>toYYYYMM(event_date)partition_by>
        <flush_interval_milliseconds>7500flush_interval_milliseconds>
    query_thread_log>
    <query_views_log>
        <database>systemdatabase>
        <table>query_views_logtable>
        <partition_by>toYYYYMM(event_date)partition_by>
        <flush_interval_milliseconds>7500flush_interval_milliseconds>
    query_views_log>
    <part_log>
        <database>systemdatabase>
        <table>part_logtable>
        <partition_by>toYYYYMM(event_date)partition_by>
        <flush_interval_milliseconds>7500flush_interval_milliseconds>
    part_log>
    <metric_log>
        <database>systemdatabase>
        <table>metric_logtable>
        <flush_interval_milliseconds>7500flush_interval_milliseconds>
        <collect_interval_milliseconds>1000collect_interval_milliseconds>
    metric_log>
    <asynchronous_metric_log>
        <database>systemdatabase>
        <table>asynchronous_metric_logtable>
        <flush_interval_milliseconds>7000flush_interval_milliseconds>
    asynchronous_metric_log>
    <opentelemetry_span_log>
        <engine>
            engine MergeTree
            partition by toYYYYMM(finish_date)
            order by (finish_date, finish_time_us, trace_id)
        engine>
        <database>systemdatabase>
        <table>opentelemetry_span_logtable>
        <flush_interval_milliseconds>7500flush_interval_milliseconds>
    opentelemetry_span_log>
    <crash_log>
        <database>systemdatabase>
        <table>crash_logtable>

        <partition_by />
        <flush_interval_milliseconds>1000flush_interval_milliseconds>
    crash_log>

    <session_log>
        <database>systemdatabase>
        <table>session_logtable>

        <partition_by>toYYYYMM(event_date)partition_by>
        <flush_interval_milliseconds>7500flush_interval_milliseconds>
    session_log>
    <top_level_domains_lists>
    top_level_domains_lists>
    <dictionaries_config>*_dictionary.xmldictionaries_config>
<user_defined_executable_functions_config>*_function.xmluser_defined_executable_functions_config>
    <encryption_codecs>
       
    encryption_codecs>

    <distributed_ddl>
        <path>/clickhouse/task_queue/ddlpath>
    distributed_ddl>
    <graphite_rollup_example>
        <pattern>
            <regexp>click_costregexp>
            <function>anyfunction>
            <retention>
                <age>0age>
                <precision>3600precision>
            retention>
            <retention>
                <age>86400age>
                <precision>60precision>
            retention>
        pattern>
        <default>
            <function>maxfunction>
            <retention>
                <age>0age>
                <precision>60precision>
            retention>
            <retention>
                <age>3600age>
                <precision>300precision>
            retention>
            <retention>
                <age>86400age>
                <precision>3600precision>
            retention>
        default>
    graphite_rollup_example>

    <format_schema_path>/var/lib/clickhouse/format_schemas/format_schema_path>
    <query_masking_rules>
        <rule>
            <name>hide encrypt/decrypt argumentsname>
            <regexp>((?:aes_)?(?:encrypt|decrypt)(?:_mysql)?)\s*\(\s*(?:'(?:\\'|.)+'|.*?)\s*\)regexp>
            <replace>\1(???)replace>
        rule>
    query_masking_rules>



    <send_crash_reports>
        <enabled>falseenabled>
        <anonymize>falseanonymize>
        <endpoint>https://[email protected]/5226277endpoint>
    send_crash_reports>
    <include_from>/etc/metrika.xmlinclude_from>
clickhouse>

metrika1.xml、metrika2.xml、metrika3.xml 见第二章ck1、ck2、ck3的配置文件。

你可能感兴趣的:(clickhouse,大数据,kubernetes,linux,运维,clickhouse)