实时数仓项目(二)DIM层地域维表建立

DIM层地域维表建立

  • 一、思路分析
  • 二、编码实现

一、思路分析

  1. mysql中lagou_area导入到hbase的lagou_area中
  2. 构建数据源,从Hbase中读取lagou_area内容
  3. 使用flink进行算子转化,得到flinktable
  4. 编写sql
  5. 将table转回流数据
  6. 自定义下沉器,将数据写入到hbase

二、编码实现

  1. 建立样例类
package dim

case class DimArea(
                  areaId:Int,
                  aname:String,
                  cid:Int,
                  city:String,
                  proId:Int,
                  province:String
                  )

case class AreaDetail(id:Int,name:String,pid:Int)

  1. 自定义HbaseReader读取lagou_area数据
package dim

import java.util

import myUtils.ConnHBase
import org.apache.flink.configuration.Configuration
import org.apache.flink.streaming.api.functions.source.{RichSourceFunction, SourceFunction}
import org.apache.hadoop.hbase.{Cell, TableName}
import org.apache.hadoop.hbase.client.{Connection, Result, ResultScanner, Scan, Table}
import org.apache.hadoop.hbase.util.Bytes

import scala.collection.JavaConverters._

//?会增量读取HBASE中的数据吗?
class HBaseReader extends RichSourceFunction[(String,String)]{

  private var conn:Connection =_
  private var table:Table =_
  private var scan:Scan=_


  override def run(sourceContext: SourceFunction.SourceContext[(String, String)]): Unit = {
    val rs: ResultScanner = table.getScanner(scan)
    val iterator: util.Iterator[Result] = rs.iterator()

    while(iterator.hasNext){
      val result: Result = iterator.next()
      val rowKey: String = Bytes.toString(result.getRow)
      val buffer = new StringBuffer()
      for(cell:Cell<-result.listCells().asScala){
        val value: String = Bytes.toString(cell.getValueArray, cell.getValueOffset, cell.getValueLength)
        buffer.append(value).append("-")

      }

      val valueString: String = buffer.replace(buffer.length() - 1, buffer.length(), "").toString
      sourceContext.collect((rowKey,valueString))
    }
  }

  override def cancel(): Unit = {

  }

  override def open(parameters: Configuration): Unit = {

    conn = new ConnHBase().connToHabse
    table = conn.getTable(TableName.valueOf("lagou_area"))
    scan = new Scan()
    scan.addFamily("f1".getBytes())

  }

  override def close(): Unit = {
    try {
      if(table!=null){
        table.close()
      }
      if(conn!=null){
        conn.close()
      }

    }catch {
      case e:Exception=>println(e.getMessage)
    }

  }
}

  1. 自定义HbaseWriter写入dim_lagou_area数据
package dim

import java.util

import myUtils.ConnHBase
import org.apache.flink.configuration.Configuration
import org.apache.flink.streaming.api.functions.sink.{RichSinkFunction, SinkFunction}
import org.apache.flink.streaming.api.functions.source.{RichSourceFunction, SourceFunction}
import org.apache.hadoop.hbase.{Cell, TableName}
import org.apache.hadoop.hbase.client.{Connection, Put, Result, ResultScanner, Scan, Table}
import org.apache.hadoop.hbase.util.Bytes

import scala.collection.JavaConverters._

class HBaseWriter extends RichSinkFunction[DimArea] {

  var connection:Connection = _
  var hTable:Table =_
  override def open(parameters: Configuration): Unit = {
    connection = new ConnHBase().connToHabse
    hTable = connection.getTable(TableName.valueOf("dim_lagou_area"))
  }

  override def close(): Unit = {
    if(hTable != null) {
      hTable.close()
    }
    if (connection != null) {
      connection.close()
    }
  }

  override def invoke(value: DimArea, context: SinkFunction.Context[_]): Unit = {
    insertDimArea(hTable,value)
  }



  def insertDimArea(table: Table, value: DimArea): Unit ={
//    val infos: Array[String] = value.split(",")
//    val areaId: String = infos(0).trim.toString
//    val aname: String = infos(1).trim.toString
//    val cid: String = infos(2).trim.toString
//    val city: String = infos(3).trim.toString
//    val proId: String = infos(4).trim.toString
//    val province: String = infos(5).trim.toString

    val areaId: String = value.areaId.toString
    val aname: String = value.aname.toString
    val cid: String = value.cid.toString
    val city: String = value.city.toString
    val proId: String = value.proId.toString
    val province: String = value.province.toString

    val put = new Put(areaId.getBytes())
    put.addColumn("f1".getBytes(),"aname".getBytes(),aname.getBytes())
    put.addColumn("f1".getBytes(),"cid".getBytes(),cid.getBytes())
    put.addColumn("f1".getBytes(),"city".getBytes(),city.getBytes())
    put.addColumn("f1".getBytes(),"proId".getBytes(),proId.getBytes())
    put.addColumn("f1".getBytes(),"province".getBytes(),province.getBytes())
    hTable.put(put)

  }
}

  1. 使用flink flinktable 处理数据
    思路:
    1.初始化数据源,拿到flinkStreamExcutionEnvironment
    2.获取流数据并进行解析
    3.根据流数据创建临时表
    4.编写转换sql
    5.将flink table转换成流数据
    6.利用自定义下沉器写入hbase表中
package dim

import org.apache.flink.streaming.api.{CheckpointingMode, TimeCharacteristic}
import org.apache.flink.streaming.api.scala.{DataStream, StreamExecutionEnvironment}
import org.apache.flink.api.scala._
import org.apache.flink.table.api.Table
import org.apache.flink.table.api.bridge.scala.StreamTableEnvironment
import org.apache.flink.types.Row
object AreaDetailInfo {


  def main(args: Array[String]): Unit = {
    val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
    env.enableCheckpointing(5000)
    env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)
    env.getCheckpointConfig.setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE)

    val data: DataStream[(String, String)] = env.addSource(new HBaseReader)

    //data.print()

    val dataStream: DataStream[AreaDetail] = data.map(x => {
      val id: Int = x._1.toInt
      val datas: Array[String] = x._2.split("-")
      val name: String = datas(5).trim
      val pid: Int = datas(6).trim.toInt
      AreaDetail(id, name, pid)
    })

    val tableEnv: StreamTableEnvironment = StreamTableEnvironment.create(env)

    tableEnv.createTemporaryView("lagou_area",dataStream)


    val sql: String =
      """
        |select a.id as areaId,a.name as aname,a.pid as cid,b.name as city,c.id as proid,c.name as province
        |from lagou_area as a
        |inner join lagou_area as b on a.pid = b.id
        |inner join lagou_area as c on b.pid = c.id
        |""".stripMargin

    val areaTable: Table = tableEnv.sqlQuery(sql)


//    val resultStream: DataStream[String] = tableEnv.toRetractStream[DimArea](areaTable).map(x => {
//      val row: DimArea = x._2
//      row.areaId + "," + row.aname + "," + row.cid + "," + row.city + "," + row.proId + "," + row.province
//    })
    //x_1是true
    val resultStream: DataStream[DimArea] = tableEnv.toRetractStream[DimArea](areaTable).map(x => {
      val row: DimArea = x._2
      row
    })

    resultStream.print()

    resultStream.addSink(new HBaseWriter)
    env.execute("dimareabuild")



  }

}

你可能感兴趣的:(实时大数据,电子商务,flink,数据仓库)