【pytorch】带batch的tensor类型图像显示

转载
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/qq_42951560/article/details/109962828
版权声明:本文为CSDN博主「Xavier Jiezou」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/qq_42951560/article/details/109962828

项目场景

pytorch训练时我们一般把数据集放到数据加载器里,然后分批拿出来训练。训练前我们一般还要看一下训练数据长啥样,也就是训练数据集可视化。那么如何显示dataloader里面带batchtensor类型的图像呢?

显示图像

绘图最常用的库就是matplotlib

pip install matplotlib

   
     
     
     
     
  • 1

显示图像会用到matplotlib.pyplot.imshow方法。查阅官方文档可知,该方法接收的图像的通道数要放到后面:
【pytorch】带batch的tensor类型图像显示_第1张图片
数据加载器中数据的维度是[B, C, H, W],我们每次只拿一个数据出来就是[C, H, W],而matplotlib.pyplot.imshow要求的输入维度是[H, W, C],所以我们需要交换一下数据维度,把通道数放到最后面,这里用到pytorch里面的permute方法(transpose方法也行,不过要交换两次,没这个方便,numpy中的transpose方法倒是可以一次交换完成),用法示例如下:

>>> x = torch.randn(2, 3, 5)
>>> x.size()
torch.Size([2, 3, 5])
>>> x.permute(1, 2, 0).size()
torch.Size([3, 5, 2])

   
     
     
     
     
  • 1
  • 2
  • 3
  • 4
  • 5

代码示例

#%% 导入模块
import torch
import matplotlib.pyplot as plt
from torchvision.utils import make_grid
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
#%% 下载数据集
train_file = datasets.MNIST(
    root='./dataset/',
    train=True,
    transform=transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize((0.1307,), (0.3081,))
    ]),
    download=True
)
#%% 制作数据加载器
train_loader = DataLoader(
    dataset=train_file,
    batch_size=9,
    shuffle=True
)
#%% 训练数据可视化
images, labels = next(iter(train_loader))
print(images.size())  # torch.Size([9, 1, 28, 28])
plt.figure(figsize=(9, 9))
for i in range(9):
    plt.subplot(3, 3, i+1)
    plt.title(labels[i].item())
    plt.imshow(images[i].permute(1, 2, 0), cmap='gray')
    plt.axis('off')
plt.show()

   
     
     
     
     
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32

这里以mnist数据集为例,演示一下显示效果。我这个代码其实还有一点小问题。数据增强的时候我不是进行标准化了嘛,就是在第7行代码:Normalize((0.1307,), (0.3081,))。所以,如果你想查看训练集的原始图像,还得反标准化。

  • 标准化:image = (image-mean)/std
  • 反标准化:image = image*std+mean

我拿imagenet中的一个蚂蚁和蜜蜂的子集做了一下实验,标准化前后的区别还是很明显的:
【pytorch】带batch的tensor类型图像显示_第2张图片

最终效果

【pytorch】带batch的tensor类型图像显示_第3张图片

引用参考

https://pytorch.org/docs/stable/tensors.html
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.imshow.html

你可能感兴趣的:(python,python)