- SQLAlchemy 数据模型可视化工具——洞察数据库架构的艺术
宁彦腾
SQLAlchemy数据模型可视化工具——洞察数据库架构的艺术sqlalchemy_data_model_visualizerAutomaticallyturnyourSQLalchemyDataModelsintoaNiceSVGDiagram项目地址:https://gitcode.com/gh_mirrors/sq/sqlalchemy_data_model_visualizer在数据驱动的
- 在Qt Designer中使用自定义小部件编程
DevRevolt
qtpython数据库编程
在QtDesigner中使用自定义小部件编程QtDesigner是一个可视化界面设计工具,它允许开发人员使用拖放操作创建用户界面。QtDesigner内置了许多标准小部件,如按钮、文本框和标签等。然而,有时候我们可能需要在QtDesigner中使用自定义小部件来满足特定的需求。本文将介绍如何在QtDesigner中使用自定义小部件,并提供相应的源代码示例。首先,我们需要创建一个自定义小部件类。这个
- 如何用Python绘制柱状图堆叠图?
上官美丽
技术分享python开发语言
在数据分析和可视化的过程中,柱状图是一种非常常用的图表类型。它能清晰地展示不同类别之间的比较。而堆叠柱状图则是在此基础上,能够展示各个部分在整体中的占比!今天,我们来聊聊如何使用Python绘制堆叠柱状图,帮助你更好地理解数据。我们将使用一个非常流行的库:Matplotlib。准备工作首先,你需要确保安装了Matplotlib库。如果还没有安装,可以通过以下命令来安装:pipinstallmatp
- Elastic Stack 8.16.0 日志收集平台的搭建
JingAi_jia917
ElastisearchLogstashFilebeatKibanaElasticstackELK日志平台
简介1.1ELK介绍ELK是Elasticsearch、Logstash、Kibana三款开源工具的首字母缩写,构成了一套完整的日志管理解决方案,主要用于日志的采集、存储、分析与可视化。1)Logstash:数据管道工具,负责从多种来源(如文件、数据库、消息队列)采集日志,进行过滤、格式化后输出到目标(如Elasticsearch);2)Elasticsearch:分布式实时搜索与
- 【杨乐昆何凯明AI论文】没有归一化的Transformer模型
东临碣石82
人工智能transformer深度学习
摘要:归一化层在现代神经网络中无处不在,长期以来一直被视为不可或缺的组成部分。本研究表明,通过使用一种极其简单的技术,没有归一化的Transformer模型可以达到相同或更好的性能。我们引入了动态Tanh(DyT),这是一种逐元素操作,表示为DyT(x)=tanh(alphax),作为Transformer中归一化层的即插即用替代品。DyT的灵感来源于这样一个观察:Transformer中的层归一
- 房产租赁数据分析与可视化
学习只是用户态
数据分析信息可视化数据挖掘
【实训目的】 通过本次实训,要求了解Python用于数据可视化的常用包:matplotlib、seaborn、pyecharts等基本使用,及各种图形的使用。【实训环境】 Jupyter环境、Pandas、NumPy、Matplotlib。【实训内容】 1.数据统计与分析方面的可视化; 2.数据分析与预测方面的可视化; 3.数据多类型的可视化。 本次实验以温州市三区房屋租赁数据(res
- 华为OD机试 - 开心消消乐 - 并查集(Python/JS/C/C++ 2024 B卷 100分)
哪 吒
华为odpythonjavascript
华为OD机试2024E卷题库疯狂收录中,刷题点这里专栏导读本专栏收录于《华为OD机试真题(Python/JS/C/C++)》。刷的越多,抽中的概率越大,私信哪吒,备注华为OD,加入华为OD刷题交流群,每一题都有详细的答题思路、详细的代码注释、3个测试用例、为什么这道题采用XX算法、XX算法的适用场景,发现新题目,随时更新。一、题目描述给定一个N行M列的二维矩阵,矩阵中每个位置的数字取值为0或1。矩
- 【大模型对话 的界面搭建-Open WebUI】
y_dd
人工智能深度学习人工智能llama语言模型
OpenWebUI前身就是OllamaWebUI,为Ollama提供一个可视化界面,可以完全离线运行,支持Ollama和兼容OpenAI的API。github网址https://github.com/open-webui/open-webui安装第一种docker安装如果ollama安装在同一台服务器上:dockerrun-d-p3000:8080--add-host=host.docker.in
- 【机器学习】基于t-SNE数据可视化工程
无水先生
AI原理和python实现人工智能综合人工智能算法
一、说明t-SNE(t-DistributedStochasticNeighborEmbedding)是一种常用的非线性降维技术。它可以将高维数据映射到一个低维空间(通常是2D或3D)来便于可视化。Scikit-learnAPI提供TSNE类,以使用T-SNE方法可视化数据。在本教程中,我们将简要学习如何在Python中使用TSNE拟合和可视化数据。二、t-SNE是个什么?2.1什么是t-SNE?
- 数据处理和分析之数据降维:t-SNE:使用t-SNE进行数据可视化实践
kkchenkx
数据挖掘信息可视化算法聚类均值算法数据挖掘机器学习
数据处理和分析之数据降维:t-SNE:使用t-SNE进行数据可视化实践数据降维简介降维技术的重要性在数据科学和机器学习领域,数据降维是一种关键的技术,用于减少数据集的维度,同时保留数据的结构和重要信息。降维不仅可以帮助我们更有效地存储和处理数据,还能在高维数据中发现潜在的模式和结构,这对于数据可视化和模型训练尤为重要。高维数据往往难以直观理解,通过降维,我们可以将其转换为二维或三维空间,便于可视化
- 高效快速教你deepseek如何进行本地部署并且可视化对话
chatgpt
随着最近一个新的人工智能deepseek的爆火,很多大佬都开始了在本地进行deepseek的部署操作,并且离线也可以使用,这里的话我就一步一步带你们部署本地的deepseek,说实话这个人工智能的实力不亚于openai的gpt安装ollama我们需要先安装ollama,安装地址ollama,我们直接点击下载,我们在下载的时候尽量使用我们的谷歌浏览器,有魔法的最好带上魔法,不然安装的时候可能会出问题
- Vue3使用ECharts入门示例
牧小七
Vueecharts前端javascript
ApacheECharts介绍一个基于JavaScript的开源可视化图表库。官方网址使用示例第一步:NPM安装EChartsnpminstallecharts--save第二步:使用EChartsimport*asechartsfrom'echarts';constmain=ref()consttu=()=>{//基于准备好的dom,初始化echarts实例varmyChart=echarts.
- Python史上最强工具书——《Python编程 从入门到实践》,允许白嫖
编程咕咕gu-
Python教程pythonPython基础开发语言Python书籍
今天给大家推荐一本超级适合自学的Python的工具书——《Python编程从入门到实践》。非常的适合零基础的小白来学习!备受业内人士推崇,豆瓣评分高达9.1!这本书分为两个部分:第一部分介绍了编程环境的搭建和Python编程所必须了解的基本概念;第二部分介绍了三个具体项目:分别是射击游戏、数据可视化、小型Web应用程序。部分内容截图:上面的学习教程资料已经是给大家整理打包完毕了,需要的可以直接带走
- 模型可解释性:基于因果推理的反事实生成与决策可视化
燃灯工作室
Ai人工智能数学建模学习机器学习
1.技术原理与数学公式1.1因果推理基础结构方程模型(SEM):X=fX(PaX,UX)X=f_X(Pa_X,U_X)X=fX(PaX,UX)其中PaXPa_XPaX为父节点集合,UXU_XUX为外生变量反事实定义:YX=x(u)=Ydo(X=x)(u)Y_{X=x}(u)=Y_{do(X=x)}(u)YX=x(u)=Ydo(X=x)(u)表示在相同背景条件uuu下,强制变量XXX取xxx时的结果
- 不知道天气咋样?一起用Python爬取天气数据分析告诉你
Dragon少年
Pythonpython爬虫图表可视化
前言今天我们分享一个小案例,获取天气数据,进行可视化分析,带你直观了解天气情况!一、核心功能设计总体来说,我们需要先对中国天气网中的天气数据进行爬取,保存为csv文件,并将这些数据进行可视化分析展示。拆解需求,大致可以整理出我们需要分为以下几步完成:通过爬虫获取中国天气网7.20-7.21的降雨数据,包括城市,风力方向,风级,降水量,相对湿度,空气质量。对获取的天气数据进行预处理,分析河南的风力等
- Python 爬虫实战:于好大夫在线抓取医生评价数据,选择优质医疗服务
西攻城狮北
python爬虫实战案例好大夫在线
目录引言一、爬虫基础预备知识1.1爬虫的基本概念1.2必备库介绍二、抓取医生评价数据2.1目标网站分析2.2发送HTTP请求2.3解析网页内容2.4保存数据三、数据分析与可视化3.1数据清洗3.2数据分析3.3数据可视化四、选择优质医疗服务4.1选择标准4.2推荐医生4.3分享推荐五、总结与展望5.1总结5.2展望引言在当今医疗信息爆炸的时代,选择一位合适的医生对于患者来说至关重要。好大夫在线是一
- 基于AI编程,产品全流程变革的具体案例
xinxiyinhe
AI编程人工智能
一、制造业智能化生产案例1.长安汽车南京工厂通过部署AI驱动的柔性制造系统,工厂可在5分钟内切换生产不同型号的电动汽车底盘,并利用数字孪生技术实时模拟生产变量,将设备停机时间大幅缩短。AI算法结合历史订单数据、供应链状态等参数,自主生成最优生产计划,实现生产效率与灵活性的双重提升。2.隆基乐叶光伏制造首创基于图像特征的实时AI精准追溯技术,每18秒完成12个电池串异常识别,解决传统追溯准确率低的问
- Python数据可视化 Pyecharts 制作 Grid 组合组件
Mr数据杨
Python数据可视化数据可视化python数据分析pyecharts组合组件
在数据可视化中,常常需要将多个不同类型的图表放置在同一个页面中,以便综合展示多个维度的数据。pyecharts库中的Grid类正是为此设计的,它允许用户将多个图表组合在一起,实现复杂的数据展示需求。通过灵活的布局配置,Grid类不仅能够帮助用户创建具有多图组合的复杂布局,还能通过精细的网格和坐标轴设置,提升图表的整体视觉效果和交互体验。本文将介绍如何使用Grid类创建并行多图,并通过多种图表组合的
- karyoploteR: 基因组数据可视化 R 包
BioIT爱好者
pythonjava机器学习人工智能大数据
karyoploteR,是一个适用于所有基因组数据(anydataonanygenome)非圆环布局(non-circularlayouts)的可视化R/Bioconductor包。开发该包的团队的目标是致力于打造一款能够像Circos那样灵活多变,但又可以满足用户更方便地使用直线(straightlines)而不是圆环(circles)展示基因组数据的工具。karyoploteR相关链接:Bio
- **ResNet-SE + MFCC** 训练框架,包括 **数据加载、训练流程**,以及 **混淆矩阵** 可视化示例
大霸王龙
系统分析业务矩阵python线性代数人工智能机器学习深度学习
1.依赖库安装如果你还没安装相关库,请先执行:pipinstalltorchtorchaudiotorchvisionscikit-learnmatplotlibtqdm2.数据加载这里假设你有一个音频分类数据集,其文件结构如下:dataset/│──train/│├──class_0/││├──audio_0.wav││├──audio_1.wav│├──class_1/││├──audio_0
- K8s 集群监控:从指标采集到可视化展示的完整方案
花笺墨韵
kubernetes
目录一、引言二、指标采集(一)K8s内置指标(二)Prometheus指标采集三、数据存储(一)Prometheus本地存储(二)远程存储四、可视化展示(一)Grafana基础(二)K8s相关仪表盘模板五、总结一、引言Kubernetes(K8s)集群环境复杂且动态变化,应用程序的运行状况、资源的使用情况时刻都在改变。为了保障K8s集群高效、稳定地运行,及时发现潜在问题并做出响应,一套完善的监控体
- 鑫云科技高性能万兆光纤共享存储------剪辑师们的“福音”
湖边野鹤
音视频图像处理图形渲染实时音视频
4K剪辑卡顿?可能是存储拖了后腿?林宇是个怀揣着导演梦的年轻人,大学毕业后,便一头扎进了影视剪辑的世界。他的剪辑技术在圈内小有名气,可最近,他却被一个问题折磨得焦头烂额。这天,林宇接到了一个重要项目,为一部4K电影预告片做剪辑。他信心满满地坐在电脑前,打开那配置不菲的工作站,导入素材,准备大显身手。然而,刚一开始剪辑,问题就接踵而至。每一次拖动时间轴,电脑都像是老牛拉破车,卡顿得厉害。原本流畅的剪
- HarmonyNext实战:基于ArkTS的高性能金融数据可视化应用开发
harmonyos-next
HarmonyNext实战:基于ArkTS的高性能金融数据可视化应用开发引言在金融科技领域,数据可视化是帮助用户快速理解复杂数据的关键工具。随着HarmonyNext的推出,开发者可以利用ArkTS的强大能力,构建高性能、跨平台的金融数据可视化应用。本文将深入探讨如何基于ArkTS开发一个金融数据可视化应用,并通过一个实战案例详细讲解其实现过程。项目背景与需求分析项目背景金融数据通常具有高维度、大
- HarmonyNext实战:基于ArkTS的高性能实时音视频通信应用开发
harmonyos-next
HarmonyNext实战:基于ArkTS的高性能实时音视频通信应用开发引言在HarmonyNext生态系统中,实时音视频通信是一个极具挑战性和实用价值的领域。本文将深入探讨如何利用ArkTS语言开发一个高性能的实时音视频通信应用,涵盖从基础概念到高级优化的完整流程。我们将通过一个实际的案例——实时视频会议应用,来展示如何在HarmonyNext平台上实现高效的音视频通信。1.项目概述1.1目标开
- ESP32-S3一款专为人工智能物联网打造的芯片
LS_learner
嵌入式人工智能物联网嵌入式硬件
ESP32-S3是一款专为AIoT(人工智能物联网)市场打造的MCU(微控制器单元)芯片,集成了2.4GHzWi-Fi和Bluetooth5(LE)功能。以下是对ESP32-S3的详细介绍:一、核心性能处理器:搭载Xtensa®32位LX7双核处理器,主频高达240MHz。内存:内置512KBSRAM(静态随机存取存储器),同时支持更大容量的高速OctalSPIflash和片外RAM,用户可配置数
- Python广东广州二手房源爬虫数据可视化分析大屏全屏系统 开题报告
2401_84688466
程序员信息可视化python爬虫
如果需要联系我,可以在CSDN网站查询黄菊华老师在文章末尾可以获取联系方式Python****广东广州二手房源爬虫数据可视化分析大屏全屏系统开题报告XXXX大学**/学校/**学院毕业论文(设计)开题报告书学生姓名所属学院学号专业班级论文(设计)题目Python广东广州二手房源爬虫数据可视化分析大屏全屏系统设计与实现指导教师姓名(职称)开题日期选题依据:1.研究背景与意义;2.国内外研究(应用与发
- Python江苏南京二手房源爬虫数据可视化分析大屏全屏系统 开题报告
2401_84562041
程序员信息可视化python爬虫
Python****江苏南京二手房源爬虫数据可视化分析大屏全屏系统开题报告XXXX大学**/学校/**学院毕业论文(设计)开题报告书学生姓名所属学院学号专业班级论文(设计)题目Python江苏南京二手房源爬虫数据可视化分析大屏全屏系统设计与实现指导教师姓名(职称)开题日期选题依据:1.研究背景与意义;2.国内外研究(应用与发展)现状。1**:研究背景与意义**Python江苏南京二手房源爬虫数据可
- Python湖南长沙二手房源爬虫数据可视化分析大屏全屏系统 开题报告
黄菊华老师
大数据库可视化二手房源数据可视化系统
博主介绍:《Vue.js入门与商城开发实战》《微信小程序商城开发》图书作者,CSDN博客专家,在线教育专家,CSDN钻石讲师;专注大学生毕业设计教育和辅导。所有项目都配有从入门到精通的基础知识视频课程,免费项目配有对应开发文档、开题报告、任务书、PPT、论文模版等项目都录了发布和功能操作演示视频;项目的界面和功能都可以定制,包安装运行!!!在文章末尾可以获取联系方式Python湖南长沙二手房源爬虫
- Google Earth Engine——导入无云 Sentinel-2 图像和NDVI计算
此星光明
GEE教程训练sentinel人工智能geendvi归一化植被指数波段运算遥感
目录搜索和导入无云Sentinel-2图像Sentinel-2的背景打开GEE界面定义您感兴趣的领域查询Sentinel-2图像的存档过滤图像集合将图像添加到地图视图定义真彩色可视化参数探索影像定义假色可视化参数从波段组合中导出指数NDVI锻炼本实验的目的是介绍GoogleEarthEngine处理环境。在本练习结束时,您将能够搜索、查找和可视化范围广泛的遥感数据集。在第一个练习中,我们将重点关注
- Excel表格模板9000套公司行政管理财务销售计划可视化图表
希希分享
软希网58soho_cnexcelExcel表格模板9000套
9000套Excel表格模板下载:办公常用表格财务会计表格行政人事表格公司管理表格人力资源表格加工与生产表格销售库存表格学生教师表格财务记账表格日周月报表格进销存系列表格库房销售表格超市市场表格家庭个人自用表格可视化图表表格
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号