L2W1作业3 梯度检验

欢迎来到本周的最后作业!在本作业中,你将学习实现和使用梯度检验。

假设你是致力于在全球范围内提供移动支付的团队的一员,被上级要求建立深度学习模型来检测欺诈行为–每当有人进行支付时,你都应该确认该支付是否可能是欺诈性的,例如用户的帐户已被黑客入侵。

但是模型的反向传播很难实现,有时还会有错误。因为这是关键的应用任务,所以你公司的CEO要反复确定反向传播的实现是正确的。CEO要求你证明你的反向传播实际上是有效的!为了保证这一点,你将应用到“梯度检验”。

让我们开始做吧!

In [1]:

cd ../input/deeplearning34288
/home/kesci/input/deeplearning34288

In [2]:

# Packages
import numpy as np
from testCases import *
from gc_utils import sigmoid, relu, dictionary_to_vector, vector_to_dictionary, gradients_to_vector

1 梯度检验原理

反向传播计算梯度 ∂ J ∂ θ \frac{\partial J}{\partial \theta} θJ,其中 θ \theta θ表示模型的参数。使用正向传播和损失函数来计算J。

由于正向传播相对容易实现,相信你有信心能做到这一点,确定100%计算正确的损失J。为此,你可以使用J来验证代码 ∂ J ∂ θ \frac{\partial J}{\partial \theta} θJ

让我们回顾一下导数(或者说梯度)的定义:
∂ J ∂ θ = lim ⁡ ε → 0 J ( θ + ε ) − J ( θ − ε ) 2 ε (1) \frac{\partial J}{\partial \theta} = \lim_{\varepsilon \to 0} \frac{J(\theta + \varepsilon) - J(\theta - \varepsilon)}{2 \varepsilon} \tag{1} θJ=ε0lim2εJ(θ+ε)J(θε)(1)

如果你还不熟悉 lim ⁡ ε → 0 \displaystyle \lim_{\varepsilon \to 0} ε0lim表示法,其意思只是“当ε值趋向很小时”。

我们知道以下内容:

  • ∂ J ∂ θ \frac{\partial J}{\partial \theta} θJ是你要确保计算正确的对象。
  • 你可以计算 J ( θ + ε ) J(\theta + \varepsilon) J(θ+ε) J ( θ − ε ) J(\theta - \varepsilon) J(θε)(在θ是实数的情况下),因为要保证J的实现是正确的。

让我们使用方程式(1)和 ε的一个小值来说服CEO你计算 ∂ J ∂ θ \frac{\partial J}{\partial \theta} θJ的代码是正确的!

2 一维梯度检查

思考一维线性函数 J ( θ ) = θ x J(\theta) = \theta x J(θ)=θx,该模型仅包含一个实数值参数 θ,并以x作为输入。

你将实现代码以计算 J ( . ) J(.) J(.)及其派生 ∂ J ∂ θ \frac{\partial J}{\partial \theta} θJ,然后,你将使用梯度检验来确保J的导数计算正确。

L2W1作业3 梯度检验_第1张图片

图1:一维线性模型

上图显示了关键的计算步骤:首先从x开始,再评估函数 J ( x ) J(x) J(x)(正向传播),然后计算导数 ∂ J ∂ θ \frac{\partial J}{\partial \theta} θJ(反向传播)。

练习:为此简单函数实现“正向传播”和“向后传播”。 即在两个单独的函数中,计算 J ( . ) J(.) J(.)(正向传播)及其相对于θ(反向传播)的导数。

In [3]:

# GRADED FUNCTION: forward_propagation

def forward_propagation(x, theta):
    """
    Implement the linear forward propagation (compute J) presented in Figure 1 (J(theta) = theta * x)
    
    Arguments:
    x -- a real-valued input
    theta -- our parameter, a real number as well
    
    Returns:
    J -- the value of function J, computed using the formula J(theta) = theta * x
    """
    
    ### START CODE HERE ### (approx. 1 line)
    J = theta * x
    ### END CODE HERE ###
    
    return J

In [4]:

x, theta = 2, 4
J = forward_propagation(x, theta)
print ("J = " + str(J))
J = 8

预期输出:
J = 8

练习:现在,执行图1的反向传播步骤(导数计算)。也就是说,计算 J ( θ ) = θ x J(\theta) = \theta x J(θ)=θx 相对于 θ的导数。为避免进行演算,你应该得到 d t h e t a = ∂ J ∂ θ = x dtheta = \frac { \partial J }{ \partial \theta} = x dtheta=θJ=x

In [5]:

# GRADED FUNCTION: backward_propagation

def backward_propagation(x, theta):
    """
    Computes the derivative of J with respect to theta (see Figure 1).
    
    Arguments:
    x -- a real-valued input
    theta -- our parameter, a real number as well
    
    Returns:
    dtheta -- the gradient of the cost with respect to theta
    """
    
    ### START CODE HERE ### (approx. 1 line)
    dtheta = x
    ### END CODE HERE ###

    
    return dtheta

In [10]:

x, theta = 2, 4
dtheta = backward_propagation(x, theta)
print ("dtheta = " + str(dtheta))
dtheta = 2

预期输出:
dtheta = 2

练习:为了展示backward_propagation()函数正确计算了梯度 ∂ J ∂ θ \frac{\partial J}{\partial \theta} θJ,让我们实施梯度检验。

说明

  • 首先使用上式(1)和=ε的极小值计算“gradapprox”。以下是要遵循的步骤:

    1. θ + = θ + ε \theta^{+} = \theta + \varepsilon θ+=θ+ε
    2. θ − = θ − ε \theta^{-} = \theta - \varepsilon θ=θε
    3. J + = J ( θ + ) J^{+} = J(\theta^{+}) J+=J(θ+)
    4. J − = J ( θ − ) J^{-} = J(\theta^{-}) J=J(θ)
    5. g r a d a p p r o x = J + − J − 2 ε gradapprox = \frac{J^{+} - J^{-}}{2 \varepsilon} gradapprox=2εJ+J
  • 然后使用反向传播计算梯度,并将结果存储在变量“grad”中

  • 最后,使用以下公式计算“gradapprox”和“grad”之间的相对差:
    d i f f e r e n c e = ∣ ∣ g r a d − g r a d a p p r o x ∣ ∣ 2 ∣ ∣ g r a d ∣ ∣ 2 + ∣ ∣ g r a d a p p r o x ∣ ∣ 2 (2) difference = \frac {\mid\mid grad - gradapprox \mid\mid_2}{\mid\mid grad \mid\mid_2 + \mid\mid gradapprox \mid\mid_2} \tag{2} difference=∣∣grad2+∣∣gradapprox2∣∣gradgradapprox2(2)

    你需要3个步骤来计算此公式:

      1. 使用np.linalg.norm(…)计算分子
      1. 计算分母,调用np.linalg.norm(…)两次
      1. 相除
  • 如果差异很小(例如小于 1 0 − 7 10^{-7} 107),则可以确信正确计算了梯度。否则,梯度计算可能会出错。

In [6]:

# GRADED FUNCTION: gradient_check

def gradient_check(x, theta, epsilon = 1e-7):
    """
    Implement the backward propagation presented in Figure 1.
    
    Arguments:
    x -- a real-valued input
    theta -- our parameter, a real number as well
    epsilon -- tiny shift to the input to compute approximated gradient with formula(1)
    
    Returns:
    difference -- difference (2) between the approximated gradient and the backward propagation gradient
    """
    
    # Compute gradapprox using left side of formula (1). epsilon is small enough, you don't need to worry about the limit.
    ### START CODE HERE ### (approx. 5 lines)
    thetaplus = theta + epsilon                               # Step 1
    thetaminus = theta - epsilon                              # Step 2
    J_plus = forward_propagation(x, thetaplus)                                  # Step 3
    J_minus = forward_propagation(x, thetaminus)                                 # Step 4
    gradapprox = (J_plus - J_minus) / (2 * epsilon)                              # Step 5
    ### END CODE HERE ###

    # Check if gradapprox is close enough to the output of backward_propagation()
    ### START CODE HERE ### (approx. 1 line)
    grad = backward_propagation(x, theta)
    ### END CODE HERE ###

    ### START CODE HERE ### (approx. 1 line)
    numerator = np.linalg.norm(grad - gradapprox)                               # Step 1'
    denominator = np.linalg.norm(grad) + np.linalg.norm(gradapprox)                            # Step 2'
    difference = numerator / denominator                              # Step 3'
    ### END CODE HERE ###
    
    if difference < 1e-7:
        print ("The gradient is correct!")
    else:
        print ("The gradient is wrong!")
    
    return difference

In [7]:

x, theta = 2, 4
difference = gradient_check(x, theta)
print("difference = " + str(difference))
The gradient is correct!
difference = 2.919335883291695e-10

预期输出:
The gradient is correct!
difference = 2.919335883291695e-10

Nice!差异小于阈值 1 0 − 7 10^{-7} 107。因此可以放心,你已经在backward_propagation()中正确计算了梯度。

现在,在更一般的情况下,你的损失函数J具有多个单个1D输入。当你训练神经网络时, θ \theta θ实际上由多个矩阵 W [ l ] W^{[l]} W[l]组成,并加上偏差 b [ l ] b^{[l]} b[l]!重要的是要知道如何对高维输入进行梯度检验。我们开始动手吧!

3 N维梯度检验

下图描述了欺诈检测模型的正向传播和反向传播:

L2W1作业3 梯度检验_第2张图片

图2:深层神经网络
LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID

让我们看一下正向传播和反向传播的实现。

In [8]:

def forward_propagation_n(X, Y, parameters):
    """
    Implements the forward propagation (and computes the cost) presented in Figure 3.
    
    Arguments:
    X -- training set for m examples
    Y -- labels for m examples 
    parameters -- python dictionary containing your parameters "W1", "b1", "W2", "b2", "W3", "b3":
                    W1 -- weight matrix of shape (5, 4)
                    b1 -- bias vector of shape (5, 1)
                    W2 -- weight matrix of shape (3, 5)
                    b2 -- bias vector of shape (3, 1)
                    W3 -- weight matrix of shape (1, 3)
                    b3 -- bias vector of shape (1, 1)
    
    Returns:
    cost -- the cost function (logistic cost for one example)
    """
    
    # retrieve parameters
    m = X.shape[1]
    W1 = parameters["W1"]
    b1 = parameters["b1"]
    W2 = parameters["W2"]
    b2 = parameters["b2"]
    W3 = parameters["W3"]
    b3 = parameters["b3"]

    # LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID
    Z1 = np.dot(W1, X) + b1
    A1 = relu(Z1)
    Z2 = np.dot(W2, A1) + b2
    A2 = relu(Z2)
    Z3 = np.dot(W3, A2) + b3
    A3 = sigmoid(Z3)

    # Cost
    logprobs = np.multiply(-np.log(A3),Y) + np.multiply(-np.log(1 - A3), 1 - Y)
    cost = 1./m * np.sum(logprobs)
    
    cache = (Z1, A1, W1, b1, Z2, A2, W2, b2, Z3, A3, W3, b3)
    
    return cost, cache

现在,运行反向传播。

In [9]:

def backward_propagation_n(X, Y, cache):
    """
    Implement the backward propagation presented in figure 2.
    
    Arguments:
    X -- input datapoint, of shape (input size, 1)
    Y -- true "label"
    cache -- cache output from forward_propagation_n()
    
    Returns:
    gradients -- A dictionary with the gradients of the cost with respect to each parameter, activation and pre-activation variables.
    """
    
    m = X.shape[1]
    (Z1, A1, W1, b1, Z2, A2, W2, b2, Z3, A3, W3, b3) = cache
    
    dZ3 = A3 - Y
    dW3 = 1./m * np.dot(dZ3, A2.T)
    db3 = 1./m * np.sum(dZ3, axis=1, keepdims = True)
    
    dA2 = np.dot(W3.T, dZ3)
    dZ2 = np.multiply(dA2, np.int64(A2 > 0))
    dW2 = 1./m * np.dot(dZ2, A1.T) * 2
    db2 = 1./m * np.sum(dZ2, axis=1, keepdims = True)
    
    dA1 = np.dot(W2.T, dZ2)
    dZ1 = np.multiply(dA1, np.int64(A1 > 0))
    dW1 = 1./m * np.dot(dZ1, X.T)
    db1 = 4./m * np.sum(dZ1, axis=1, keepdims = True)
    
    gradients = {"dZ3": dZ3, "dW3": dW3, "db3": db3,
                 "dA2": dA2, "dZ2": dZ2, "dW2": dW2, "db2": db2,
                 "dA1": dA1, "dZ1": dZ1, "dW1": dW1, "db1": db1}
    
    return gradients

你在欺诈检测测试集上获得了初步的实验结果,但是这并不是100%确定的模型,毕竟没有东西是完美的!让我们实现梯度检验以验证你的梯度是否正确。

梯度检验原理

与1和2中一样,你想将“gradapprox”与通过反向传播计算的梯度进行比较。公式仍然是:
∂ J ∂ θ = lim ⁡ ε → 0 J ( θ + ε ) − J ( θ − ε ) 2 ε (3) \frac{\partial J}{\partial \theta} = \lim_{\varepsilon \to 0} \frac{J(\theta + \varepsilon) - J(\theta - \varepsilon)}{2 \varepsilon} \tag{3} θJ=ε0lim2εJ(θ+ε)J(θε)(3)

但是,θ不再是标量。 而是一个叫做“参数”的字典。 我们为你实现了一个函数"dictionary_to_vector()"。它将“参数”字典转换为称为“值”的向量,该向量是通过将所有参数(W1, b1, W2, b2, W3, b3)重塑为向量并将它们串联而获得的。

反函数是“vector_to_dictionary”,它输出回“parameters”字典。

L2W1作业3 梯度检验_第3张图片

图2:dictionary_to_vector()和vector_to_dictionary()
你将在 gradient_check_n()中用到这些函数

我们还使用gradients_to_vector()将“gradients”字典转换为向量“grad”。

练习:实现gradient_check_n()。

说明:这是伪代码,可帮助你实现梯度检验。

For each i in num_parameters:

  • 计算J_plus [i]:

    1. θ + \theta^{+} θ+设为 np.copy(parameters_values)

    2. θ i + \theta^{+}_i θi+ 设为 θ i + + ε \theta^{+}_i + \varepsilon θi++ε

    3. 使用forward_propagation_n(x, y, vector_to_dictionary( θ + \theta^{+} θ+))计算 J i + J^{+}_i Ji+

  • 计算J_minus [i]:也是用 θ − \theta^{-} θ

  • 计算 g r a d a p p r o x [ i ] = J i + − J i − 2 ε gradapprox[i] = \frac{J^{+}_i - J^{-}_i}{2 \varepsilon} gradapprox[i]=2εJi+Ji

因此,你将获得向量gradapprox,其中gradapprox[i]是相对于parameter_values[i]的梯度的近似值。现在,你可以将此gradapprox向量与反向传播中的梯度向量进行比较。就像一维情况(步骤1’,2’,3’)一样计算:
d i f f e r e n c e = ∥ g r a d − g r a d a p p r o x ∥ 2 ∥ g r a d ∥ 2 + ∥ g r a d a p p r o x ∥ 2 (4) difference = \frac {\| grad - gradapprox \|_2}{\| grad \|_2 + \| gradapprox \|_2 } \tag{4} difference=grad2+gradapprox2gradgradapprox2(4)

In [10]:

# GRADED FUNCTION: gradient_check_n

def gradient_check_n(parameters, gradients, X, Y, epsilon = 1e-7):
    """
    Checks if backward_propagation_n computes correctly the gradient of the cost output by forward_propagation_n
    
    Arguments:
    parameters -- python dictionary containing your parameters "W1", "b1", "W2", "b2", "W3", "b3":
    grad -- output of backward_propagation_n, contains gradients of the cost with respect to the parameters. 
    x -- input datapoint, of shape (input size, 1)
    y -- true "label"
    epsilon -- tiny shift to the input to compute approximated gradient with formula(1)
    
    Returns:
    difference -- difference (2) between the approximated gradient and the backward propagation gradient
    """
    
    # Set-up variables
    parameters_values, _ = dictionary_to_vector(parameters)
    grad = gradients_to_vector(gradients)
    num_parameters = parameters_values.shape[0]
    J_plus = np.zeros((num_parameters, 1))
    J_minus = np.zeros((num_parameters, 1))
    gradapprox = np.zeros((num_parameters, 1))
    
    # Compute gradapprox
    for i in range(num_parameters):
        
        # Compute J_plus[i]. Inputs: "parameters_values, epsilon". Output = "J_plus[i]".
        # "_" is used because the function you have to outputs two parameters but we only care about the first one
        ### START CODE HERE ### (approx. 3 lines)
        thetaplus = np.copy(parameters_values)                                      # Step 1
        thetaplus[i][0] = thetaplus[i][0] + epsilon                                # Step 2
        J_plus[i], _ = forward_propagation_n(X, Y, vector_to_dictionary(thetaplus))                                  # Step 3
        ### END CODE HERE ###

        # Compute J_minus[i]. Inputs: "parameters_values, epsilon". Output = "J_minus[i]".
        ### START CODE HERE ### (approx. 3 lines)
        thetaminus = np.copy(parameters_values)                                     # Step 1
        thetaminus[i][0] = thetaminus[i][0] - epsilon                            # Step 2        
        J_minus[i], _ = forward_propagation_n(X, Y, vector_to_dictionary(thetaminus))                                  # Step 3
        ### END CODE HERE ###

        # Compute gradapprox[i]
        ### START CODE HERE ### (approx. 1 line)
        gradapprox[i] = (J_plus[i] - J_minus[i]) / (2.* epsilon)
        ### END CODE HERE ###

    # Compare gradapprox to backward propagation gradients by computing difference.
    ### START CODE HERE ### (approx. 1 line)
    numerator = np.linalg.norm(grad - gradapprox)                                           # Step 1'
    denominator = np.linalg.norm(grad) + np.linalg.norm(gradapprox)                                         # Step 2'
    difference = numerator / denominator                                          # Step 3'
    ### END CODE HERE ###

    if difference > 1e-7:
        print ("\033[93m" + "There is a mistake in the backward propagation! difference = " + str(difference) + "\033[0m")
    else:
        print ("\033[92m" + "Your backward propagation works perfectly fine! difference = " + str(difference) + "\033[0m")
    
    return difference

In [11]:

X, Y, parameters = gradient_check_n_test_case()

cost, cache = forward_propagation_n(X, Y, parameters)
gradients = backward_propagation_n(X, Y, cache)
difference = gradient_check_n(parameters, gradients, X, Y)
There is a mistake in the backward propagation! difference = 0.2850931567761624

预期输出:
There is a mistake in the backward propagation! difference = 0.2850931567761624

看起来backward_propagation_n代码似乎有错误!很好,你已经实现了梯度检验。返回到backward_propagation并尝试查找/更正错误*(提示:检查dW2和db1)*。如果你已解决问题,请重新运行梯度检验。请记住,如果修改代码,则需要重新执行定义backward_propagation_n()的单元格。

你可以进行梯度检验来证明你的导数计算的正确吗?即使作业的这一部分没有评分,我们也强烈建议你尝试查找错误并重新运行梯度检验,直到确信实现了正确的反向传播。

注意

  • 梯度检验很慢!用 ∂ J ∂ θ ≈ J ( θ + ε ) − J ( θ − ε ) 2 ε \frac{\partial J}{\partial \theta} \approx \frac{J(\theta + \varepsilon) - J(\theta - \varepsilon)}{2 \varepsilon} θJ2εJ(θ+ε)J(θε)逼近梯度在计算上是很耗费资源的。因此,我们不会在训练期间的每次迭代中都进行梯度检验。只需检查几次梯度是否正确。
  • 至少如我们介绍的那样,梯度检验不适用于dropout。通常,你将运行不带dropout的梯度检验算法以确保你的backprop是正确的,然后添加dropout。

Nice!现在你可以确信你用于欺诈检测的深度学习模型可以正常工作!甚至可以用它来说服你的CEO。

你在此笔记本中应记住的内容

  • 梯度检验可验证反向传播的梯度与梯度的数值近似值之间的接近度(使用正向传播进行计算)。
  • 梯度检验很慢,因此我们不会在每次训练中都运行它。通常,你仅需确保其代码正确即可运行它,然后将其关闭并将backprop用于实际的学习过程。

你可能感兴趣的:(人工智能,机器学习,python)