- PointNet++改进策略 :模块改进 | OA-CNNs | , 全自适应3D稀疏卷积神经网络(OA-CNNs),超越基于Transformer的模型,同时显著降低计算和内存成本
我是瓦力
PointNet++改进策略3dtransformer深度学习计算机视觉人工智能神经网络
目录介绍核心思想及其实现引入空间自适应感受野自适应关系卷积(ARConv)网络整体架构设计训练和验证实验与评估如何改进PointNet++引入空间自适应感受野引入自适应关系学习利用自适应聚合器论文题目:OA-CNNs:Omni-AdaptiveSparseCNNsfor3DSemanticSegmentation发布期刊:CVPR2024作者地址:1香港中文大学2香港大学3香港中文大学,深圳4HI
- PyTorch 实战教程:从模型搭建到训练的每一步
AI_小站
pytorch人工智能pythontransformer深度学习大模型LLM
用深度学习搞事情,模型搭建和训练是绕不开的两步。而PyTorch,作为一个“又灵活又好用”的深度学习框架,简直就是写代码的快乐源泉。今天我们就从0到1,实战PyTorch的模型搭建和训练流程。说白了,看完你就能自己搭个神经网络,喂点数据进去,再让它干点活。安装PyTorch要用PyTorch,得先装上它。PyTorch的安装稍微有点讲究,主要是要根据你的硬件选择CPU版本还是GPU版本。基本安装命
- 计算机视觉:卷积核
每天五分钟玩转人工智能
计算机视觉计算机视觉深度学习人工智能机器学习卷积神经网络
本文重点卷积神经网络(ConvolutionalNeuralNetwork,CNN)是一种深度学习模型,广泛应用于图像识别、自然语言处理、语音识别等领域。在卷积神经网络中,卷积核是网络的核心组件之一。通过不断堆叠卷积层和池化层,可以逐渐提取出更高级别的特征,从而实现更复杂的任务。卷积神经网络中的卷积核可以通过反向传播算法进行训练和优化,使其能够自适应地学习输入数据中的特征。因此,卷积神经网络在图像
- 浅谈人群扩展(lookalike)模型
eso1983
算法
Lookalike主要用于广告或者推荐系统中,找到与种子用户相似的人群。常用的算法应该包括协同过滤、基于标签的相似度计算,还有一些机器学习模型,比如逻辑回归、随机森林,以及深度学习的模型,比如DNN或者Embedding方法。这里简单介绍一下Lookalike人群扩展(相似人群扩展)中常用算法模型的解析,涵盖原理、数学公式、实现步骤、优缺点及适用场景。1.基于标签的相似度匹配原理通过用户标签(兴趣
- 4-2 计算机视觉-卷积神经网络-基本网络组件
沉睡的小卡比兽
AI基础知识cnn卷积核端到端训练计算机视觉卷积神经网络
1、为什么卷积核一般都是奇数?2、由哪些层组成了基本的卷积神经网络,作用分别是什么?3、卷积层和池化层有什么区别?4、什么是端到端学习end-to-end?1、为什么卷积核一般都是奇数?(1)保护位置信息:保证锚点刚好在中间,方便以模块中心为标准进行滑动卷积,避免了位置信息发生偏移(2)padding时的对称性:保证padding时图像的两边依然对齐(3)一些历史尝试的经验,如边缘检测等,还有pa
- Python 深度学习实战:生成对抗网络
AI天才研究院
深度学习实战AI实战AI大模型企业级应用开发实战大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA
1.背景介绍生成对抗网络(GenerativeAdversarialNetwork,GAN)是近年来较火热的深度学习模型之一,其在图像合成、视频生成、文本数据生成等领域均取得了不俗的效果。与传统的机器学习模型不同,GAN可以生成真实有效的数据,无需人工标注数据。它由两部分组成:生成器(Generator)和判别器(Discriminator)。生成器通过学习,根据噪声或随机变量(latentvar
- 【深度学习】常见模型-卷积神经网络(Convolutional Neural Networks, CNN)
IT古董
人工智能深度学习机器学习深度学习cnn人工智能
卷积神经网络(CNN)概念简介卷积神经网络(ConvolutionalNeuralNetworks,CNN)是一种专门用于处理数据具有网格状拓扑结构(如图像、语音)的深度学习模型。它通过卷积操作从输入数据中提取局部特征,并逐层构建更复杂的特征表示,广泛应用于图像分类、目标检测、语音识别等领域。关键组成部分卷积层(ConvolutionalLayer)使用卷积核(滤波器)在输入上滑动,提取局部特征。
- Jetson Orin Nano Super之pytorch + torchvision安装
lida2003
Linux人工智能jetsonorin
JetsonOrinNanoSuper之pytorch+torchvision安装1源由2.安装pytorch2.1NVIDIA手动版本下载2.2开源自己编译版本3.安装torchvision4.参考资料1源由YoloincompatiblewithJetpack6.2(JetsonOrinNanoSuper)YoloincompatiblewithJetpack6.2(JetsonOrinNan
- 【Lora微调】提高模型效率的创新方法
@fishv
人工智能大模型微调Lora
前言在自然语言处理(NLP)和机器学习的研究和应用中,随着模型规模的不断扩大,模型训练的计算成本和存储需求也不断攀升。大型预训练模型,如GPT、BERT等,虽然在许多任务上表现出色,但它们的训练和微调通常需要巨大的计算资源,这使得许多研究者和开发者无法充分利用这些模型进行个性化或领域特定的调整。为了在保持模型性能的同时减少计算开销,**Lora(Low-RankAdaptation)**应运而生。
- Pytorch实现论文:对GAN的交替优化
LJ1147517021
GAN系列生成对抗网络计算机视觉人工智能pytorch机器学习深度学习
简介这次带来的是ClosingtheGapBetweenTheoryandPracticeDuringAlternatingOptimizationforGANs,Gans交替优化中缩小理论与实践的差距这篇论文的一个核心代码在ACGAN模型上的效果测试,核心是修改了损失函数部分的计算。作者的实验是在StyleGAN上进行的。论文简介论文题目:ClosingtheGapBetweenTheoryan
- pytorch-分类-检测-分割的dataset和dataloader创建
呆呆珝
基础pytorch分类人工智能
1.前言在PyTorch中,Dataset和DataLoader是两个重要的工具,用于构建输入数据的管道。(1)Dataset是一个抽象类,表示数据集,需要实现__len__和__getitem__方法。(2)DataLoader是一个可迭代的数据加载器,它封装了数据集的加载、批处理、打乱和并行加载等功能。2.分类任务创建Dataset和DataLoader(1)对于分类任务,Dataset需要返
- NCNN推理
呆呆珝
推理框架c++人工智能
1.前言ncnn是一个高性能的神经网络前向计算框架,专门针对移动设备和嵌入式设备设计。它由腾讯优图实验室开发,旨在提供高效的神经网络推理能力,特别是在资源受限的环境中,如智能手机和嵌入式系统。ncnn被广泛应用于移动端和嵌入式设备上的各种深度学习应用,包括但不限于:图像分类/目标检测/语义分割/人脸识别/图像生成与处理2.NCNN的CMakeLists.txt编写ncnn的头文件,链接文件,静态链
- 目标检测实践过程中,遇到“No module named ‘torch._six’”报错的一个快速解决方案(无需重装PyTorch)
Cold_Rain02
深度学习Python目标检测人工智能计算机视觉
很多人在按照网络、书籍教程中的流程尝试自己实现一个基于Faster-RCNN的目标检测模型时,如果调用了PyTorch官方github上的文件时,coco_eval.py文件中会触发报错。1.报错原因PyTorch在2.0之后的版本中移除了_six,导致在coco_eval.py中调用torch._six失败2.解决方案(1)直接根据代码内容修改代码我们仔细观察coco_eval.py的代码,发现
- python3+TensorFlow 2.x 基础学习(一)
刀客123
python学习tensorflow学习人工智能
目录TensorFlow2.x基础1、安装TensorFlow2.x2、TensorFlow2.x基础概念2、1EagerExecution2、2TensorFlow张量(Tensor)3、使用Keras构建神经网络模型3、1构建Sequential模型3、2编译模型1、Optimizer(优化器)2、Loss(损失函数)3、Metrics(评估指标)3、3训练模型3、4评估模型3、5预测4、使用
- 2025数学建模美赛——神经网络预测模型详解
前程算法屋
数学建模教程数学建模神经网络人工智能
2025数学建模美赛——神经网络预测模型详解一、神经网络预测模型基础1.1、神经网络概述神经网络是一种模拟人脑神经元工作方式的计算模型,它由大量的节点(或称为神经元)组成,这些节点通过连接权重相互连接。这种模型能够进行复杂的非线性数据处理,通过调整连接权重,可以从数据中学习到复杂的模式和关系。神经网络的基本结构包括输入层、隐藏层和输出层。输入层接收外部数据,隐藏层对数据进行处理,输出层则给出模型的
- [Python从零到壹] 七十七.图像识别及经典案例篇之目标检测入门普及和ImageAI对象检测详解
Eastmount
Python从零到壹python目标检测ImageAI图像是被基础系列
欢迎大家来到“Python从零到壹”,在这里我将分享约200篇Python系列文章,带大家一起去学习和玩耍,看看Python这个有趣的世界。所有文章都将结合案例、代码和作者的经验讲解,真心想把自己近十年的编程经验分享给大家,希望对您有所帮助,文章中不足之处也请海涵。Python系列整体框架包括基础语法10篇、网络爬虫30篇、可视化分析10篇、机器学习20篇、大数据分析20篇、图像识别30篇、人工智
- kaggle上面有哪些适合机器学习新手的比赛和项目
xiamu_CDA
机器学习人工智能
Kaggle上面有哪些适合机器学习新手的比赛和项目?在当今数据驱动的时代,机器学习已经成为一门炙手可热的技能。Kaggle作为全球最大的数据科学竞赛平台,不仅汇聚了众多顶尖的数据科学家和机器学习工程师,也为初学者提供了丰富的学习资源和实战机会。对于机器学习新手来说,选择合适的比赛和项目是至关重要的第一步。本文将为你推荐一些适合新手的Kaggle比赛和项目,并提供一些实用的建议,帮助你在机器学习的道
- python鸢尾花数据集knn_【python+机器学习1】python 实现 KNN
weixin_39629269
python鸢尾花数据集knn
欢迎关注哈希大数据微信公众号【哈希大数据】1KNN算法基本介绍K-NearestNeighbor(k最邻近分类算法),简称KNN,是最简单的一种有监督的机器学习算法。也是一种懒惰学习算法,即开始训练仅仅是保存所有样本集的信息,直到测试样本到达才开始进行分类决策。KNN算法的核心思想:要想确定测试样本属于哪一类,就先寻找所有训练样本中与该测试样本“距离”最近的前K个样本,然后判断这K个样本中大部分所
- 【机器学习】使用scikit-learn中的KNN包实现对鸢尾花数据集或者自定义数据集的的预测
加德霍克
机器学习人工智能python学习作业
一、KNN算法概念K最近邻(K-NearestNeighbor,KNN)分类算法是数据挖掘分类技术中最简单的方法之一,是著名的模式识别统计学方法,在机器学习分类算法中占有相当大的地位。它是一个理论上比较成熟的方法。既是最简单的机器学习算法之一,也是基于实例的学习方法中最基本的,又是最好的文本分类算法之一。二、对鸢尾花数据集进行预测1、代码示例:fromsklearn.datasetsimportl
- Julia语言的计算机基础
Code侠客行
包罗万象golang开发语言后端
Julia语言的计算机基础引言随着数据科学、机器学习和高性能计算的快速发展,对编程语言的需求也日益增加。在众多编程语言中,Julia语言因其独特的设计理念和高性能而迅速崛起。本文将详细探讨Julia语言的基础知识,包括其历史背景、安装与环境配置、基本语法、数据结构、函数与模块、以及性能优化等方面,旨在为对Julia感兴趣的读者提供一份全面的入门指南。一、Julia语言简介1.1历史背景Julia是
- 想转行到人工智能领域,我该学什么,怎么学?
张登杰踩
人工智能python
转行到人工智能(AI)领域需要系统的学习和实践,以下是详细的路径建议,涵盖基础知识、技能学习、项目实践和求职准备:一、明确目标和领域方向人工智能领域广泛,建议先了解细分方向(如机器学习、深度学习、计算机视觉、自然语言处理、强化学习等),结合兴趣和职业规划选择切入点。二、构建基础知识1.数学基础线性代数:矩阵运算、特征值、向量空间。微积分:导数、梯度、优化理论。概率与统计:贝叶斯定理、分布、假设检验
- 基于RBF神经网络的在线学习算法
fanxbl957
人工智能理论与实践神经网络学习算法
基于RBF神经网络的在线学习算法一、引言随着信息技术的飞速发展,数据的产生速度日益加快,传统的批量学习算法在处理大规模、实时更新的数据时面临着诸多挑战。在线学习算法作为一种可以实时更新模型的学习方式,逐渐受到广泛关注。RBF(径向基函数)神经网络作为一种强大的神经网络模型,以其良好的函数逼近能力和非线性处理能力,为在线学习提供了一种有效的工具。本文将深入探讨基于RBF神经网络的在线学习算法,包括其
- # AI计算模式 神经网络模型 深度神经网络 多层感知机 卷积神经网络 循环神经网络 长短期记忆网络 图像识别、语音识别、自然语言 轻量化模型和模型压缩 大模型分布式并行
EwenWanW
AGI人工智能神经网络dnn
AI计算模式AI技术发展至今,主流的模型是深度神经网络模型。近20年来,神经网络模型经过多样化的发展,模型总体变得越来越复杂和庞大,对硬件设备的计算速度、存储能力、通信速度的要求越来越高。尽管学者已经提出了许多方法优化模型结构,降低模型的参数量,但是伴随着人们对AI能力的要求越来越高,模型变得更大是不可避免的。原先单CPU可进行模型的训练与推理,如今需要使用GPU、TPU等设备,并通过分布式并行的
- 机器学习问题:AttributeError: ‘NoneType‘ object has no attribute ‘split‘ 解决办法
零零鲎
机器学习人工智能
参考博客:本次博客参考http://t.csdnimg.cn/8E7eH。写下来主要是为了整理自己在学习过程中遇到的问题并把解决办法列出来。学习内容:如果运行出现:AttributeError:‘NoneType’objecthasnoattribute'split’这样的问题。网上有很多解决办法是降级numpy到1.21.4。然后上面博客给出的解决方案是升级threadpoolctl。可以使用命
- AI Agent:一场智能革命的开始
机器人openai区块链
在当今科技日新月异的时代,AI(人工智能)技术正以前所未有的速度改变着我们的生活和工作方式。其中,AIAgent作为AI领域的一个新兴分支,正逐渐展现出其巨大的潜力和价值。本文将深入探讨AIAgent的发展现状、核心优势以及未来的发展方向,带您领略这一前沿技术的无限魅力。一、AIAgent的发展现状:技术突破与广泛应用近年来,随着大数据、云计算和机器学习等技术的飞速发展,AIAgent的技术水平得
- 多层感知机和神经网络的区别_情感分析之多层全连接神经网络
weixin_39653766
多层感知机和神经网络的区别
全连接神经网络全连接神经网络是一种最基本的神经网络结构,英文为FullConnection,所以一般简称FC。FC的准则很简单:神经网络中除输入层之外的每个节点都和上一层的所有节点有连接。上图是一个双隐层的前馈全连接神经网络,或者叫多层感知机(MLP)。它的每个隐层都是全连接层。它的每一个单元叫神经元。多层感知机在单层神经网络的基础上引入了一到多个隐藏层(hiddenlayer)。隐藏层位于输入层
- AAAI2024论文解读|Memory-Efficient Reversible Spiking Neural Networks-water-merged
paixiaoxin
文献阅读论文合集脉冲神经网络可逆架构内存效率深度学习训练优化AAAI
论文标题Memory-EfficientReversibleSpikingNeuralNetworks内存高效可逆脉冲神经网络论文链接Memory-EfficientReversibleSpikingNeuralNetworks论文下载论文作者HongZhang,YuZhang内容简介本文提出了一种可逆脉冲神经网络(RevSNN),旨在降低脉冲神经网络(SNNs)在训练过程中对中间激活和膜电位的内
- 深入详解神经网络的基础知识、工作原理以及应用【一】
猿享天开
人工智能基础知识学习深度学习神经网络人工智能
目录引言1.神经网络基础1.1感知器模型1.2多层感知器(MLP)示例:2.前馈神经网络(FeedforwardNeuralNetworks,FFNN)2.1结构与特点2.2训练过程2.3优化方法3.卷积神经网络(CNN)3.1基本概念3.2层类型3.3网络架构3.4应用领域3.5示例代码示例描述:4.循环神经网络(RNN)4.1基本概念4.2RNN结构4.3应用领域4.4示例代码示例描述:5.深
- 【杂谈】-为什么Python是AI的首选语言
视觉与物联智能
杂谈python人工智能开发语言深度学习机器学习
为什么Python是AI的首选语言文章目录为什么Python是AI的首选语言1、为何Python引领人工智能发展1.1可用性和生态系统1.2用户群和用例1.3效率辅助2、AI项目对Python开发人员的要求3、如何开启你的AI学习之旅人工智能的广泛应用正在软件工程领域引发范式转变。Python凭借其易用性、成熟的生态系统以及满足人工智能和机器学习(ML)工作流数据驱动需求的能力,迅速成为人工智能开
- Swin-Unet:图像分割领域的强大工具
陈凯韵
Swin-Unet:图像分割领域的强大工具【下载地址】Swin-UnetPyTorch代码仓库本仓库提供了一个基于PyTorch实现的Swin-Unet模型的代码资源。Swin-Unet是一种结合了SwinTransformer和U-Net结构的深度学习模型,适用于图像分割任务。该代码可以帮助研究人员和开发者快速上手并应用Swin-Unet模型进行图像分割实验项目地址:https://gitcod
- 多线程编程之理财
周凡杨
java多线程生产者消费者理财
现实生活中,我们一边工作,一边消费,正常情况下会把多余的钱存起来,比如存到余额宝,还可以多挣点钱,现在就有这个情况:我每月可以发工资20000万元 (暂定每月的1号),每月消费5000(租房+生活费)元(暂定每月的1号),其中租金是大头占90%,交房租的方式可以选择(一月一交,两月一交、三月一交),理财:1万元存余额宝一天可以赚1元钱,
- [Zookeeper学习笔记之三]Zookeeper会话超时机制
bit1129
zookeeper
首先,会话超时是由Zookeeper服务端通知客户端会话已经超时,客户端不能自行决定会话已经超时,不过客户端可以通过调用Zookeeper.close()主动的发起会话结束请求,如下的代码输出内容
Created /zoo-739160015
CONNECTEDCONNECTED
.............CONNECTEDCONNECTED
CONNECTEDCLOSEDCLOSED
- SecureCRT快捷键
daizj
secureCRT快捷键
ctrl + a : 移动光标到行首ctrl + e :移动光标到行尾crtl + b: 光标前移1个字符crtl + f: 光标后移1个字符crtl + h : 删除光标之前的一个字符ctrl + d :删除光标之后的一个字符crtl + k :删除光标到行尾所有字符crtl + u : 删除光标至行首所有字符crtl + w: 删除光标至行首
- Java 子类与父类这间的转换
周凡杨
java 父类与子类的转换
最近同事调的一个服务报错,查看后是日期之间转换出的问题。代码里是把 java.sql.Date 类型的对象 强制转换为 java.sql.Timestamp 类型的对象。报java.lang.ClassCastException。
代码:
- 可视化swing界面编辑
朱辉辉33
eclipseswing
今天发现了一个WindowBuilder插件,功能好强大,啊哈哈,从此告别手动编辑swing界面代码,直接像VB那样编辑界面,代码会自动生成。
首先在Eclipse中点击help,选择Install New Software,然后在Work with中输入WindowBui
- web报表工具FineReport常用函数的用法总结(文本函数)
老A不折腾
finereportweb报表工具报表软件java报表
文本函数
CHAR
CHAR(number):根据指定数字返回对应的字符。CHAR函数可将计算机其他类型的数字代码转换为字符。
Number:用于指定字符的数字,介于1Number:用于指定字符的数字,介于165535之间(包括1和65535)。
示例:
CHAR(88)等于“X”。
CHAR(45)等于“-”。
CODE
CODE(text):计算文本串中第一个字
- mysql安装出错
林鹤霄
mysql安装
[root@localhost ~]# rpm -ivh MySQL-server-5.5.24-1.linux2.6.x86_64.rpm Preparing... #####################
- linux下编译libuv
aigo
libuv
下载最新版本的libuv源码,解压后执行:
./autogen.sh
这时会提醒找不到automake命令,通过一下命令执行安装(redhat系用yum,Debian系用apt-get):
# yum -y install automake
# yum -y install libtool
如果提示错误:make: *** No targe
- 中国行政区数据及三级联动菜单
alxw4616
近期做项目需要三级联动菜单,上网查了半天竟然没有发现一个能直接用的!
呵呵,都要自己填数据....我了个去这东西麻烦就麻烦的数据上.
哎,自己没办法动手写吧.
现将这些数据共享出了,以方便大家.嗯,代码也可以直接使用
文件说明
lib\area.sql -- 县及县以上行政区划分代码(截止2013年8月31日)来源:国家统计局 发布时间:2014-01-17 15:0
- 哈夫曼加密文件
百合不是茶
哈夫曼压缩哈夫曼加密二叉树
在上一篇介绍过哈夫曼编码的基础知识,下面就直接介绍使用哈夫曼编码怎么来做文件加密或者压缩与解压的软件,对于新手来是有点难度的,主要还是要理清楚步骤;
加密步骤:
1,统计文件中字节出现的次数,作为权值
2,创建节点和哈夫曼树
3,得到每个子节点01串
4,使用哈夫曼编码表示每个字节
- JDK1.5 Cyclicbarrier实例
bijian1013
javathreadjava多线程Cyclicbarrier
CyclicBarrier类
一个同步辅助类,它允许一组线程互相等待,直到到达某个公共屏障点 (common barrier point)。在涉及一组固定大小的线程的程序中,这些线程必须不时地互相等待,此时 CyclicBarrier 很有用。因为该 barrier 在释放等待线程后可以重用,所以称它为循环的 barrier。
CyclicBarrier支持一个可选的 Runnable 命令,
- 九项重要的职业规划
bijian1013
工作学习
一. 学习的步伐不停止 古人说,活到老,学到老。终身学习应该是您的座右铭。 世界在不断变化,每个人都在寻找各自的事业途径。 您只有保证了足够的技能储
- 【Java范型四】范型方法
bit1129
java
范型参数不仅仅可以用于类型的声明上,例如
package com.tom.lang.generics;
import java.util.List;
public class Generics<T> {
private T value;
public Generics(T value) {
this.value =
- 【Hadoop十三】HDFS Java API基本操作
bit1129
hadoop
package com.examples.hadoop;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FileStatus;
import org.apache.hadoo
- ua实现split字符串分隔
ronin47
lua split
LUA并不象其它许多"大而全"的语言那样,包括很多功能,比如网络通讯、图形界面等。但是LUA可以很容易地被扩展:由宿主语言(通常是C或 C++)提供这些功能,LUA可以使用它们,就像是本来就内置的功能一样。LUA只包括一个精简的核心和最基本的库。这使得LUA体积小、启动速度快,从 而适合嵌入在别的程序里。因此在lua中并没有其他语言那样多的系统函数。习惯了其他语言的字符串分割函
- java-从先序遍历和中序遍历重建二叉树
bylijinnan
java
public class BuildTreePreOrderInOrder {
/**
* Build Binary Tree from PreOrder and InOrder
* _______7______
/ \
__10__ ___2
/ \ /
4
- openfire开发指南《连接和登陆》
开窍的石头
openfire开发指南smack
第一步
官网下载smack.jar包
下载地址:http://www.igniterealtime.org/downloads/index.jsp#smack
第二步
把smack里边的jar导入你新建的java项目中
开始编写smack连接openfire代码
p
- [移动通讯]手机后盖应该按需要能够随时开启
comsci
移动
看到新的手机,很多由金属材质做的外壳,内存和闪存容量越来越大,CPU速度越来越快,对于这些改进,我们非常高兴,也非常欢迎
但是,对于手机的新设计,有几点我们也要注意
第一:手机的后盖应该能够被用户自行取下来,手机的电池的可更换性应该是必须保留的设计,
- 20款国外知名的php开源cms系统
cuiyadll
cms
内容管理系统,简称CMS,是一种简易的发布和管理新闻的程序。用户可以在后端管理系统中发布,编辑和删除文章,即使您不需要懂得HTML和其他脚本语言,这就是CMS的优点。
在这里我决定介绍20款目前国外市面上最流行的开源的PHP内容管理系统,以便没有PHP知识的读者也可以通过国外内容管理系统建立自己的网站。
1. Wordpress
WordPress的是一个功能强大且易于使用的内容管
- Java生成全局唯一标识符
darrenzhu
javauuiduniqueidentifierid
How to generate a globally unique identifier in Java
http://stackoverflow.com/questions/21536572/generate-unique-id-in-java-to-label-groups-of-related-entries-in-a-log
http://stackoverflow
- php安装模块检测是否已安装过, 使用的SQL语句
dcj3sjt126com
sql
SHOW [FULL] TABLES [FROM db_name] [LIKE 'pattern']
SHOW TABLES列举了给定数据库中的非TEMPORARY表。您也可以使用mysqlshow db_name命令得到此清单。
本命令也列举数据库中的其它视图。支持FULL修改符,这样SHOW FULL TABLES就可以显示第二个输出列。对于一个表,第二列的值为BASE T
- 5天学会一种 web 开发框架
dcj3sjt126com
Web框架framework
web framework层出不穷,特别是ruby/python,各有10+个,php/java也是一大堆 根据我自己的经验写了一个to do list,按照这个清单,一条一条的学习,事半功倍,很快就能掌握 一共25条,即便很磨蹭,2小时也能搞定一条,25*2=50。只需要50小时就能掌握任意一种web框架
各类web框架大同小异:现代web开发框架的6大元素,把握主线,就不会迷路
建议把本文
- Gson使用三(Map集合的处理,一对多处理)
eksliang
jsongsonGson mapGson 集合处理
转载请出自出处:http://eksliang.iteye.com/blog/2175532 一、概述
Map保存的是键值对的形式,Json的格式也是键值对的,所以正常情况下,map跟json之间的转换应当是理所当然的事情。 二、Map参考实例
package com.ickes.json;
import java.lang.refl
- cordova实现“再点击一次退出”效果
gundumw100
android
基本的写法如下:
document.addEventListener("deviceready", onDeviceReady, false);
function onDeviceReady() {
//navigator.splashscreen.hide();
document.addEventListener("b
- openldap configuration leaning note
iwindyforest
configuration
hostname // to display the computer name
hostname <changed name> // to change
go to: /etc/sysconfig/network, add/modify HOSTNAME=NEWNAME to change permenately
dont forget to change /etc/hosts
- Nullability and Objective-C
啸笑天
Objective-C
https://developer.apple.com/swift/blog/?id=25
http://www.cocoachina.com/ios/20150601/11989.html
http://blog.csdn.net/zhangao0086/article/details/44409913
http://blog.sunnyxx
- jsp中实现参数隐藏的两种方法
macroli
JavaScriptjsp
在一个JSP页面有一个链接,//确定是一个链接?点击弹出一个页面,需要传给这个页面一些参数。//正常的方法是设置弹出页面的src="***.do?p1=aaa&p2=bbb&p3=ccc"//确定目标URL是Action来处理?但是这样会在页面上看到传过来的参数,可能会不安全。要求实现src="***.do",参数通过其他方法传!//////
- Bootstrap A标签关闭modal并打开新的链接解决方案
qiaolevip
每天进步一点点学习永无止境bootstrap纵观千象
Bootstrap里面的js modal控件使用起来很方便,关闭也很简单。只需添加标签 data-dismiss="modal" 即可。
可是偏偏有时候需要a标签既要关闭modal,有要打开新的链接,尝试多种方法未果。只好使用原始js来控制。
<a href="#/group-buy" class="btn bt
- 二维数组在Java和C中的区别
流淚的芥末
javac二维数组数组
Java代码:
public class test03 {
public static void main(String[] args) {
int[][] a = {{1},{2,3},{4,5,6}};
System.out.println(a[0][1]);
}
}
运行结果:
Exception in thread "mai
- systemctl命令用法
wmlJava
linuxsystemctl
对比表,以 apache / httpd 为例 任务 旧指令 新指令 使某服务自动启动 chkconfig --level 3 httpd on systemctl enable httpd.service 使某服务不自动启动 chkconfig --level 3 httpd off systemctl disable httpd.service 检查服务状态 service h