NNDL 实验五 前馈神经网络(1)二分类任务

NNDL 实验五 前馈神经网络(1)二分类任务

  • 4.1 神经元
    • 4.1.1 净活性值
    • 思考题
    • 4.1.2 激活函数
      • 4.1.2.1 Sigmoid 型函数
      • 4.1.2.2 ReLU型函数
  • 4.2 基于前馈神经网络的二分类任务
    • 4.2.1 数据集构建
      • 4.2.2 模型构建
        • 4.2.2.1 线性层算子
        • 4.2.2.2 Logistic算子`
        • 4.2.2.3 层的串行组合
    • 4.2.3 损失函数
    • 4.2.4 模型优化
        • 4.2.4.1 反向传播算法
        • 4.2.4.2 损失函数
        • 4.2.4.3 Logistic算子
        • 4.2.4.4 线性层
        • 4.2.4.5 整个网络
      • 4.2.5 完善Runner类:RunnerV2_1
      • 4.2.6 模型训练
    • 4.2.7 性能评价
    • 思考题
    • 总结
    • 参考文献
    • 参考链接

4.1 神经元

4.1.1 净活性值

使用pytorch计算一组输入的净活性值
在这里插入图片描述使用Pytorch计算一组输入的净活性值。代码实现如下:

import torch

# 2个特征数为5的样本
X = torch.rand([2, 5])

# 含有5个参数的权重向量
w = torch.rand([5, 1])
# 偏置项
b = torch.rand([1, 1])

# 使用'torch.matmul'实现矩阵相乘
z = torch.matmul(X, w) + b
print("input X:", X)
print("weight w:", w, "\nbias b:", b)
print("output z:", z)

运行结果:
NNDL 实验五 前馈神经网络(1)二分类任务_第1张图片torch.nn.Linear()函数实现:

import torch
import torch.nn as nn
from torch.autograd import Variable

m = nn.Linear(5, 1)
input = Variable(torch.rand(2, 5)) #包装Tensor使得支持自动微分
output = m(input)
print(output)

运行结果:
在这里插入图片描述torch.nn.Linear()的使用:

class torch.nn.Linear(in_features,out_features,bias = True

作用

对传入数据应用线性变换:y = A x+ b

参数

  • in_features - 每个输入样本的大小
  • out_features - 每个输出样本的大小
  • bias - 如果设置为False,则图层不会学习附加偏差。默认值:True

具体举例如上.

学习pytorch不会查pytorch文档可不行,下面是pytorch官网的截图:
NNDL 实验五 前馈神经网络(1)二分类任务_第2张图片NNDL 实验五 前馈神经网络(1)二分类任务_第3张图片注:如上所示,需要注意的一点是torch.nn.Linear()层只支持TensorFloat32类型

官方文档的链接:
Pytorch官方文档


思考题

加权求和与仿射变换之间有什么区别和联系?
简单来说,而加权和就是对输入的信息进行线性变换,仿射变换 就是线性变换+平移。
1.从实践角度来看
加权和(线性变换)的形式如下:
在这里插入图片描述再附上一张老师找给我们关于仿射变换的图:
NNDL 实验五 前馈神经网络(1)二分类任务_第4张图片仿射变换与线性变换的联系如下:
NNDL 实验五 前馈神经网络(1)二分类任务_第5张图片下面是老师找的关于加权求和与仿射变换的讲解图:
NNDL 实验五 前馈神经网络(1)二分类任务_第6张图片

2.从数学角度来看

加权和(线性变换)从几何直观有三个要点:

  • 变换前是直线的,变换后依然是直线
  • 直线比例保持不变变换前是原点的
  • 变换后依然是原点

仿射变换从几何直观只有两个要点:

  • 变换前是直线的
  • 变换后依然是直线直线比例保持不变

少了原点保持不变这一条。

很直观的就是仿射变换不仅仅包括线性变换,而且包含剪切和反射
NNDL 实验五 前馈神经网络(1)二分类任务_第7张图片

4.1.2 激活函数

净活性值z再经过一个非线性函数f(⋅)后,得到神经元的活性值a。
在这里插入图片描述激活函数通常为非线性函数,可以增强神经网络的表示能力和学习能力。
常用的激活函数有S型函数和ReLU函数。

4.1.2.1 Sigmoid 型函数

1.使用python实现并可视化“Logistic函数、Tanh函数”

import torch
import matplotlib.pyplot as plt

# Logistic函数
def logistic(z):
    return 1.0 / (1.0 + torch.exp(-z))

# Tanh函数
def tanh(z):
    return (torch.exp(z) - torch.exp(-z)) / (torch.exp(z) + torch.exp(-z))

# 在[-10,10]的范围内生成10000个输入值,用于绘制函数曲线
z = torch.linspace(-10, 10, 10000)

plt.figure()
plt.plot(z.tolist(), logistic(z).tolist(), color='#e4007f', label="Logistic Function")
plt.plot(z.tolist(), tanh(z).tolist(), color='#f19ec2', linestyle ='--', label="Tanh Function")

ax = plt.gca() # 获取轴,默认有4个
# 隐藏两个轴,通过把颜色设置成none
ax.spines['top'].set_color('none')
ax.spines['right'].set_color('none')
# 调整坐标轴位置   
ax.spines['left'].set_position(('data',0))
ax.spines['bottom'].set_position(('data',0))
plt.legend(loc='lower right', fontsize='large')
plt.show()

运行结果:
NNDL 实验五 前馈神经网络(1)二分类任务_第8张图片

2.在pytorch中找到相应函数并测试。

import torch
import matplotlib.pyplot as plt

# 在[-10,10]的范围内生成10000个输入值,用于绘制函数曲线
z = torch.linspace(-10, 10, 10000)

plt.figure()
plt.plot(z.tolist(), torch.sigmoid(z).tolist(), color='#ff0077', label="Logistic Function")
plt.plot(z.tolist(), torch.tanh(z).tolist(), color='#ff0077', linestyle ='--', label="Tanh Function")

ax = plt.gca() # 获取轴,默认有4个
# 隐藏两个轴,通过把颜色设置成none
ax.spines['top'].set_color('none')
ax.spines['right'].set_color('none')
# 调整坐标轴位置   
ax.spines['left'].set_position(('data',0))
ax.spines['bottom'].set_position(('data',0))
plt.legend(loc='lower right', fontsize='large')
plt.show()

运行结果:
NNDL 实验五 前馈神经网络(1)二分类任务_第9张图片

4.1.2.2 ReLU型函数

常见的ReLU函数有ReLU和带泄露的ReLU(Leaky ReLU)

1.使用python实现并可视化可视化“ReLU、带泄露的ReLU的函数”

import torch
import matplotlib.pyplot as plt


# ReLU
def relu(z):
    return torch.maximum(z, torch.as_tensor(0.))

# 带泄露的ReLU
def leaky_relu(z, negative_slope=0.1):
    # 当前版本torch暂不支持直接将bool类型转成int类型,因此调用了torch的cast函数来进行显式转换
    a1 = (torch.can_cast((z > 0).dtype, torch.float32) * z)
    a2 = (torch.can_cast((z <= 0).dtype, torch.float32) * (negative_slope * z))
    return a1 + a2

# 在[-10,10]的范围内生成一系列的输入值,用于绘制relu、leaky_relu的函数曲线
z = torch.linspace(-10, 10, 10000)

plt.figure()
plt.plot(z.tolist(), relu(z).tolist(), color="#e4007f", label="ReLU Function")
plt.plot(z.tolist(), leaky_relu(z).tolist(), color="#f19ec2", linestyle="--", label="LeakyReLU Function")

ax = plt.gca()
ax.spines['top'].set_color('none')
ax.spines['right'].set_color('none')
ax.spines['left'].set_position(('data',0))
ax.spines['bottom'].set_position(('data',0))
plt.legend(loc='upper left', fontsize='large')
plt.savefig('fw-relu-leakyrelu.pdf')
plt.show()

运行结果:
NNDL 实验五 前馈神经网络(1)二分类任务_第10张图片
2.在pytorch中找到相应函数并测试。

import torch
import matplotlib.pyplot as plt


# 在[-10,10]的范围内生成一系列的输入值,用于绘制relu、leaky_relu的函数曲线
z = torch.linspace(-10, 10, 10000)

plt.figure()
plt.plot(z.tolist(), torch.relu(z).tolist(), color="#e4007f", label="ReLU Function")
plt.plot(z.tolist(), torch.nn.LeakyReLU(0.1)(z), color="#f19ec2", linestyle="--", label="LeakyReLU Function")

ax = plt.gca()
ax.spines['top'].set_color('none')
ax.spines['right'].set_color('none')
ax.spines['left'].set_position(('data',0))
ax.spines['bottom'].set_position(('data',0))
plt.legend(loc='upper left', fontsize='large')
plt.savefig('fw-relu-leakyrelu.pdf')
plt.show()

运行结果:
NNDL 实验五 前馈神经网络(1)二分类任务_第11张图片

4.2 基于前馈神经网络的二分类任务

4.2.1 数据集构建

使用第3.1.1节中构建的二分类数据集:Moon1000数据集,其中训练集640条、验证集160条、测试集200条。该数据集的数据是从两个带噪音的弯月形状数据分布中采样得到,每个样本包含2个特征。

from nndl.dataset import make_moons
# 采样1000个样本
n_samples = 1000
X, y = make_moons(n_samples=n_samples, shuffle=True, noise=0.5)

num_train = 640
num_dev = 160
num_test = 200

X_train, y_train = X[:num_train], y[:num_train]
X_dev, y_dev = X[num_train:num_train + num_dev], y[num_train:num_train + num_dev]
X_test, y_test = X[num_train + num_dev:], y[num_train + num_dev:]

y_train = y_train.reshape([-1,1])
y_dev = y_dev.reshape([-1,1])
y_test = y_test.reshape([-1,1])

运行结果:
在这里插入图片描述

注:nndl.dataset.make_moons如下:

import torch
import math
import numpy as np
# 新增make_moons函数
def make_moons(n_samples=1000, shuffle=True, noise=None):
    n_samples_out = n_samples // 2
    n_samples_in = n_samples - n_samples_out

    outer_circ_x = torch.cos(torch.linspace(0, math.pi, n_samples_out))
    outer_circ_y = torch.sin(torch.linspace(0, math.pi, n_samples_out))

    inner_circ_x = 1 - torch.cos(torch.linspace(0, math.pi, n_samples_in))
    inner_circ_y = 0.5 - torch.sin(torch.linspace(0, math.pi, n_samples_in))

    print('outer_circ_x.shape:', outer_circ_x.shape, 'outer_circ_y.shape:', outer_circ_y.shape)
    print('inner_circ_x.shape:', inner_circ_x.shape, 'inner_circ_y.shape:', inner_circ_y.shape)

    X = torch.stack(
        [torch.cat([outer_circ_x, inner_circ_x]),
         torch.cat([outer_circ_y, inner_circ_y])],
         axis=1
    )

    print('after concat shape:', torch.cat([outer_circ_x, inner_circ_x]).shape)
    print('X shape:', X.shape)

    # 使用'torch. zeros'将第一类数据的标签全部设置为0
    # 使用'torch. ones'将第一类数据的标签全部设置为1
    y = torch.cat(
        [torch.zeros([n_samples_out]), torch.ones([n_samples_in])]
    )

    print('y shape:', y.shape)

    # 如果shuffle为True,将所有数据打乱
    if shuffle:
        # 使用'torch.randperm'生成一个数值在0到X.shape[0],随机排列的一维Tensor做索引值,用于打乱数据
        idx = torch.randperm(X.shape[0])
        X = X[idx]
        y = y[idx]

    # 如果noise不为None,则给特征值加入噪声
    if noise is not None:
        X += np.random.normal(0.0, noise, X.shape)

    return X, y

4.2.2 模型构建

为了更高效的构建前馈神经网络,我们先定义每一层的算子,然后再通过算子组合构建整个前馈神经网络。

4.2.2.1 线性层算子

from nndl.op import Op

# 实现线性层算子
class Linear(Op):
    def __init__(self, input_size, output_size, name, weight_init=np.random.standard_normal, bias_init=torch.zeros):

        self.params = {}
        # 初始化权重
        self.params['W'] = weight_init([input_size, output_size])
        self.params['W'] = torch.as_tensor(self.params['W'],dtype=torch.float32)
        # 初始化偏置
        self.params['b'] = bias_init([1, output_size])
        self.inputs = None

        self.name = name

    def forward(self, inputs):
        self.inputs = inputs

        outputs = torch.matmul(self.inputs, self.params['W']) + self.params['b']
        return outputs

Op=Op
注:nndl.op.Op如下:

class Op(object):
    def __init__(self):
        pass

    def __call__(self, inputs):
        return self.forward(inputs)

    def forward(self, inputs):
        raise NotImplementedError

    def backward(self, inputs):
        raise NotImplementedError

4.2.2.2 Logistic算子`

class Logistic(Op):
    def __init__(self):
        self.inputs = None
        self.outputs = None

    def forward(self, inputs):

        outputs = 1.0 / (1.0 + torch.exp(-inputs))
        self.outputs = outputs
        return outputs

4.2.2.3 层的串行组合

实现一个两层的用于二分类任务的前馈神经网络,选用Logistic作为激活函数,利用上面实现的线性层和激活函数算子来组装

# 实现一个两层前馈神经网络
class Model_MLP_L2(Op):
    def __init__(self, input_size, hidden_size, output_size):
        self.fc1 = Linear(input_size, hidden_size, name="fc1")
        self.act_fn1 = Logistic()
        self.fc2 = Linear(hidden_size, output_size, name="fc2")
        self.act_fn2 = Logistic()

    def __call__(self, X):
        return self.forward(X)

    def forward(self, X):
        z1 = self.fc1(X)
        a1 = self.act_fn1(z1)
        z2 = self.fc2(a1)
        a2 = self.act_fn2(z2)
        return a2

实例化一个两层的前馈网络,令其输入层维度为5,隐藏层维度为10,输出层维度为1。
并随机生成一条长度为5的数据输入两层神经网络,观察输出结果。

# 实例化模型
model = Model_MLP_L2(input_size=5, hidden_size=10, output_size=1)
# 随机生成1条长度为5的数据
X = torch.rand([1, 5])
result = model(X)
print ("result: ", result)

运行结果:
在这里插入图片描述

4.2.3 损失函数

# 实现交叉熵损失函数
class BinaryCrossEntropyLoss(op.Op):
    def __init__(self):
        self.predicts = None
        self.labels = None
        self.num = None

    def __call__(self, predicts, labels):
        return self.forward(predicts, labels)

    def forward(self, predicts, labels):
        self.predicts = predicts
        self.labels = labels
        self.num = self.predicts.shape[0]
        loss = -1. / self.num * (torch.matmul(self.labels.t(), torch.log(self.predicts)) + torch.matmul((1-self.labels.t()), torch.log(1-self.predicts)))
        loss = torch.squeeze(loss, axis=1)
        return loss

4.2.4 模型优化

神经网络的层数通常比较深,其梯度计算和上一章中的线性分类模型的不同的点在于:

线性模型通常比较简单可以直接计算梯度,而神经网络相当于一个复合函数,需要利用链式法则进行反向传播来计算梯度。

4.2.4.1 反向传播算法

  • 第1步是前向计算,可以利用算子的forward()方法来实现;
  • 第2步是反向计算梯度,可以利用算子的backward()方法来实现;
  • 第3步中的计算参数梯度也放到backward()中实现,更新参数放到另外的优化器中专门进行。

4.2.4.2 损失函数

二分类交叉熵损失函数

实现损失函数的backward():


# 实现交叉熵损失函数
class BinaryCrossEntropyLoss(Op):
    def __init__(self, model):
        self.predicts = None
        self.labels = None
        self.num = None

        self.model = model

    def __call__(self, predicts, labels):
        return self.forward(predicts, labels)

    def forward(self, predicts, labels):

        self.predicts = predicts
        self.labels = labels
        self.num = self.predicts.shape[0]
        loss = -1. / self.num * (torch.matmul(self.labels.t(), torch.log(self.predicts))
                                 + torch.matmul((1 - self.labels.t()), torch.log(1 - self.predicts)))

        loss = torch.squeeze(loss, axis=1)
        return loss

    def backward(self):
        # 计算损失函数对模型预测的导数
        loss_grad_predicts = -1.0 * (self.labels / self.predicts -
                                     (1 - self.labels) / (1 - self.predicts)) / self.num

        # 梯度反向传播
        self.model.backward(loss_grad_predicts)

4.2.4.3 Logistic算子

为Logistic算子增加反向函数

class Logistic(Op):
    def __init__(self):
        self.inputs = None
        self.outputs = None
        self.params = None

    def forward(self, inputs):
        outputs = 1.0 / (1.0 + torch.exp(-inputs))
        self.outputs = outputs
        return outputs

    def backward(self, grads):
        # 计算Logistic激活函数对输入的导数
        outputs_grad_inputs = torch.multiply(self.outputs, (1.0 - self.outputs))
        return torch.multiply(grads,outputs_grad_inputs)

4.2.4.4 线性层

NNDL 实验五 前馈神经网络(1)二分类任务_第12张图片
代码实现如下:

class Linear(Op):
    def __init__(self, input_size, output_size, name, weight_init=np.random.standard_normal, bias_init=torch.zeros):
        self.params = {}
        self.params['W'] = weight_init([input_size, output_size])
        self.params['W'] = torch.as_tensor(self.params['W'],dtype=torch.float32)
        self.params['b'] = bias_init([1, output_size])

        self.inputs = None
        self.grads = {}

        self.name = name

    def forward(self, inputs):
        self.inputs = inputs
        outputs = torch.matmul(self.inputs, self.params['W']) + self.params['b']
        return outputs

    def backward(self, grads):
        self.grads['W'] = torch.matmul(self.inputs.T, grads)
        self.grads['b'] = torch.sum(grads, dim=0)

        # 线性层输入的梯度
        return torch.matmul(grads, self.params['W'].T)

4.2.4.5 整个网络

实现完整的两层神经网络的前向和反向计算

class Model_MLP_L2(Op):
    def __init__(self, input_size, hidden_size, output_size):
        # 线性层
        self.fc1 = Linear(input_size, hidden_size, name="fc1")
        # Logistic激活函数层
        self.act_fn1 = Logistic()
        self.fc2 = Linear(hidden_size, output_size, name="fc2")
        self.act_fn2 = Logistic()

        self.layers = [self.fc1, self.act_fn1, self.fc2, self.act_fn2]

    def __call__(self, X):
        return self.forward(X)

    # 前向计算
    def forward(self, X):
        z1 = self.fc1(X)
        a1 = self.act_fn1(z1)
        z2 = self.fc2(a1)
        a2 = self.act_fn2(z2)
        return a2

    # 反向计算
    def backward(self, loss_grad_a2):
        loss_grad_z2 = self.act_fn2.backward(loss_grad_a2)
        loss_grad_a1 = self.fc2.backward(loss_grad_z2)
        loss_grad_z1 = self.act_fn1.backward(loss_grad_a1)
        loss_grad_inputs = self.fc1.backward(loss_grad_z1)

4.2.4.6 优化器

在计算好神经网络参数的梯度之后,我们将梯度下降法中参数的更新过程实现在优化器中。

与第3章中实现的梯度下降优化器SimpleBatchGD不同的是,此处的优化器需要遍历每层,对每层的参数分别做更新。

from nndl.opitimizer import Optimizer

class BatchGD(Optimizer):
    def __init__(self, init_lr, model):
        super(BatchGD, self).__init__(init_lr=init_lr, model=model)

    def step(self):
        # 参数更新
        for layer in self.model.layers: # 遍历所有层
            if isinstance(layer.params, dict):
                for key in layer.params.keys():
                    layer.params[key] = layer.params[key] - self.init_lr * layer.grads[key]

注:nndl.opitimizer.Optimizer如下:

from abc import abstractmethod
#新增优化器基类
class Optimizer(object):
    def __init__(self, init_lr, model):

        #初始化学习率,用于参数更新的计算
        self.init_lr = init_lr
        #指定优化器需要优化的模型
        self.model = model

    @abstractmethod
    def step(self):
        pass

4.2.5 完善Runner类:RunnerV2_1

1.支持自定义算子的梯度计算,在训练过程中调用self.loss_fn.backward()从损失函数开始反向计算梯度;
2.每层的模型保存和加载,将每一层的参数分别进行保存和加载。

class RunnerV2_1(object):
    def __init__(self, model, optimizer, metric, loss_fn, **kwargs):
        self.model = model
        self.optimizer = optimizer
        self.loss_fn = loss_fn
        self.metric = metric

        # 记录训练过程中的评估指标变化情况
        self.train_scores = []
        self.dev_scores = []

        # 记录训练过程中的评价指标变化情况
        self.train_loss = []
        self.dev_loss = []

    def train(self, train_set, dev_set, **kwargs):
        # 传入训练轮数,如果没有传入值则默认为0
        num_epochs = kwargs.get("num_epochs", 0)
        # 传入log打印频率,如果没有传入值则默认为100
        log_epochs = kwargs.get("log_epochs", 100)

        # 传入模型保存路径
        save_dir = kwargs.get("save_dir", None)

        # 记录全局最优指标
        best_score = 0
        # 进行num_epochs轮训练
        for epoch in range(num_epochs):
            X, y = train_set
            # 获取模型预测
            logits = self.model(X)
            # 计算交叉熵损失
            trn_loss = self.loss_fn(logits, y)  # return a tensor

            self.train_loss.append(trn_loss.item())
            # 计算评估指标
            trn_score = self.metric(logits, y).item()
            self.train_scores.append(trn_score)

            self.loss_fn.backward()

            # 参数更新
            self.optimizer.step()

            dev_score, dev_loss = self.evaluate(dev_set)
            # 如果当前指标为最优指标,保存该模型
            if dev_score > best_score:
                print(f"[Evaluate] best accuracy performence has been updated: {best_score:.5f} --> {dev_score:.5f}")
                best_score = dev_score
                if save_dir:
                    self.save_model(save_dir)

            if log_epochs and epoch % log_epochs == 0:
                print(f"[Train] epoch: {epoch}/{num_epochs}, loss: {trn_loss.item()}")

    def evaluate(self, data_set):
        X, y = data_set
        # 计算模型输出
        logits = self.model(X)
        # 计算损失函数
        loss = self.loss_fn(logits, y).item()
        self.dev_loss.append(loss)
        # 计算评估指标
        score = self.metric(logits, y).item()
        self.dev_scores.append(score)
        return score, loss

    def predict(self, X):
        return self.model(X)

    def save_model(self, save_dir):
        # 对模型每层参数分别进行保存,保存文件名称与该层名称相同
        for layer in self.model.layers:  # 遍历所有层
            if isinstance(layer.params, dict):
               torch.save(layer.params, os.path.join(save_dir, layer.name+".pdparams"))

    def load_model(self, model_dir):
        # 获取所有层参数名称和保存路径之间的对应关系
        model_file_names = os.listdir(model_dir)
        name_file_dict = {}
        for file_name in model_file_names:
            name = file_name.replace(".pdparams", "")
            name_file_dict[name] = os.path.join(model_dir, file_name)

        # 加载每层参数
        for layer in self.model.layers:  # 遍历所有层
            if isinstance(layer.params, dict):
                name = layer.name
                file_path = name_file_dict[name]
                layer.params = torch.load(file_path)

注:我把上面模型保存路径改成了相对路径,方便模型的保存,不容易报错。

4.2.6 模型训练

使用训练集和验证集进行模型训练,共训练2000个epoch。评价指标为accuracy。

epoch_num = 1000

model_saved_dir = 'D:\project\DL\Lenet\logs'

# 输入层维度为2
input_size = 2
# 隐藏层维度为5
hidden_size = 5
# 输出层维度为1
output_size = 1

# 定义网络
model = Model_MLP_L2(input_size=input_size, hidden_size=hidden_size, output_size=output_size)

# 损失函数
loss_fn = BinaryCrossEntropyLoss(model)

# 优化器
learning_rate = 0.2
optimizer = BatchGD(learning_rate, model)

# 评价方法
metric = accuracy

# 实例化RunnerV2_1类,并传入训练配置
runner = RunnerV2_1(model, optimizer, metric, loss_fn)

runner.train([X_train, y_train], [X_dev, y_dev], num_epochs=epoch_num, log_epochs=50, save_dir=model_saved_dir)

注:这里你记得修改你的目录名称,我为了方便直接找了个之前的日志文件夹放进去训练好的模型。

(epoch_num = 1000,lr = 0.2)运行结果:
NNDL 实验五 前馈神经网络(1)二分类任务_第13张图片在这里插入图片描述(epoch_num = 1000,lr = 0.002)运行结果:

在这里插入图片描述在这里插入图片描述在这里插入图片描述注: 可以看到Train loss下降,但是Test loss也有微小的下降趋于不变,具体是网络正在学习还是模型达到过拟合状态需要拉大epoch进一步看看效果。
(epoch_num = 10000,lr = 0.002)运行结果:
在这里插入图片描述
在这里插入图片描述注: 彻底把网络跑成过拟合状态,说明上面的结果不是网络正在学习而是过拟合状态

(epoch_num = 1000,lr = 2)运行结果:
NNDL 实验五 前馈神经网络(1)二分类任务_第14张图片注:train loss下降,Test loss上升,虽然不那么明显,但也说明此时网络已经达到欠拟合状态(网络结构非常简单,对比得出的效果不是那么明显。)
附上我的笔记图:
NNDL 实验五 前馈神经网络(1)二分类任务_第15张图片

可视化观察训练集与验证集的损失函数变化情况。

import matplotlib.pyplot as plt
# 打印训练集和验证集的损失
plt.figure()
plt.plot(range(epoch_num), runner.train_loss, color="#e4007f", label="Train loss")
plt.plot(range(epoch_num), runner.dev_loss, color="#f19ec2", linestyle='--', label="Dev loss")
plt.xlabel("epoch", fontsize='large')
plt.ylabel("loss", fontsize='large')
plt.legend(fontsize='x-large')
plt.show()
#加载训练好的模型
runner.load_model(model_saved_dir)
# 在测试集上对模型进行评价
score, loss = runner.evaluate([X_test, y_test])

运行结果:
NNDL 实验五 前馈神经网络(1)二分类任务_第16张图片

4.2.7 性能评价

# 加载训练好的模型
runner.load_model(model_saved_dir)
# 在测试集上对模型进行评价
score, loss = runner.evaluate([X_test, y_test])

print("[Test] score/loss: {:.4f}/{:.4f}".format(score, loss))

运行结果:
在这里插入图片描述下面对结果进行可视化:

import math

# 均匀生成40000个数据点
x1, x2 = torch.meshgrid(torch.linspace(-math.pi, math.pi, 200), torch.linspace(-math.pi, math.pi, 200))

x = torch.stack([torch.flatten(x1), torch.flatten(x2)], axis=1)

# 预测对应类别
y = runner.predict(x)
# y = torch.squeeze(torch.as_tensor(torch.can_cast((y>=0.5).dtype,torch.float32)))

# 绘制类别区域
plt.ylabel('x2')
plt.xlabel('x1')
plt.scatter(x[:,0].tolist(), x[:,1].tolist(), c=y.tolist(), cmap=plt.cm.Spectral)

plt.scatter(X_train[:, 0].tolist(), X_train[:, 1].tolist(), marker='*', c=torch.squeeze(y_train,axis=-1).tolist())
plt.scatter(X_dev[:, 0].tolist(), X_dev[:, 1].tolist(), marker='*', c=torch.squeeze(y_dev,axis=-1).tolist())
plt.scatter(X_test[:, 0].tolist(), X_test[:, 1].tolist(), marker='*', c=torch.squeeze(y_test,axis=-1).tolist())

plt.show()

运行结果:
NNDL 实验五 前馈神经网络(1)二分类任务_第17张图片

思考题

对比 3.1 基于Logistic回归的二分类任务 4.2 基于前馈神经网络的二分类任务

第一点即上文提到的:线性模型通常比较简单可以直接计算梯度,而神经网络相当于一个复合函数,需要利用链式法则进行反向传播来计算梯度,并且从保存模型的时候就可以看出前馈神经网络的参数量要大于logistic的参数量。

第二点:自己感觉使用logisitic激活函数的前馈神经网络和基于Logisitic回归的二分类任务差不太多,我觉得不同点可能是前馈神经网络扩展性更强一点,毕竟这次实验前馈神经网络只搭建了两层,搭更深后可能在相同的数据集上前馈神经网络的性能表现更好一些,就比如深度前馈神经网络VGG相比AlexNet并没有太多的改进,其最主要的意义就是实践了“神经网络越深越好”的理念。

(基于Logisitic回归的二分类任务测试集表现图)

在这里插入图片描述(基于前馈神经网络的二分类任务测试集表现图)

可以看出前馈神经网络比Logisitic回归性能还是好很多的。

第三点:这一点就和这两次做的实验没关系了,主要是数学建模中的模型应用,比如数学建模选择模型的过程中,会参考数据量的多少,数据量少肯定选择Logisitic回归模型,数据量大两个都可以,但是数据量越大,训练神经网络得到的结果越好。

总结

1.这次主要做的工作是搭建了一个两层的前馈神经网络,工作量较小,但是在保存模型的时候一直报错(因为这次需要保存的模型文件是一个文件夹,而不是一个文件,已经把解决方案贴到参考文献里了),打算这周把后面实验也趁热打铁做一下。
2.清楚了加权求和与仿射变换数学与深度学习方面的区别与联系,总结了一下Logistic回归模型与前馈神经网络的对比,发现还是前馈神经网络的性能更好一些。


参考文献

注:这次学习一下参考文献的写法

[1]陈舜华,吕纯濂.前馈神经网络和Logit回归的比较研究[J].数学的实践与认识,2002(03):374-386.

[2]邱锡鹏.《神经网络与深度学习》[J].中文信息学报,2020,34(07):4.

参考链接

Pytorch官方文档(入门必查)
Python torch.nn.LeakyReLU用法及代码示例
PermissionError: [Errno 13] Permission denied: 问题的解决方法(这个就是我保存模型报错时的解决方案)

如何通俗地讲解「仿射变换」这个概念?
仿射变换及其变换矩阵的理解

NNDL 实验五 前馈神经网络(1)二分类任务(老师布置作业的链接)

你可能感兴趣的:(DL实验,神经网络,分类,深度学习)