即插即用 | 超越CBAM,全新注意力机制,GAM不计成本提高精度(附Pytorch实现)...

点击上方“计算机视觉工坊”,选择“星标”

干货第一时间送达

960f66607a7995da60415b3511e535cc.png

作者丨ChaucerG

来源丨集智书童

即插即用 | 超越CBAM,全新注意力机制,GAM不计成本提高精度(附Pytorch实现)..._第1张图片

为了提高计算机视觉任务的性能,人们研究了各种注意力机制。然而,以往的方法忽略了保留通道和空间方面的信息以增强跨维度交互的重要性。因此,本文提出了一种通过减少信息弥散和放大全局交互表示来提高深度神经网络性能的全局注意力机制。

本文引入了3D-permutation 与多层感知器的通道注意力和卷积空间注意力子模块。在CIFAR-100和ImageNet-1K上对所提出的图像分类机制的评估表明,本文的方法稳定地优于最近的几个注意力机制,包括ResNet和轻量级的MobileNet。

1简介

卷积神经网络已广泛应用于计算机视觉领域的许多任务和应用中。研究人员发现,CNN在提取深度视觉表征方面表现良好。随着CNN相关技术的改进,ImageNet数据集的图像分类准确率在过去9年里从63%提高到了90%。这一成就也归功于ImageNet数据集的复杂性,这为相关研究提供了难得的机会。由于它覆盖的真实场景的多样性和规模,有利于传统的图像分类、表征学习、迁移学习等研究。特别是,它也给注意力机制带来了挑战。

近年来,注意力机制在多个应用中不断提高性能,引起了研究兴趣。Wang等人使用编码-解码器residual attention模块对特征图进行细化,以获得更好的性能。Hu 等人分别使用空间注意力机制和通道注意力机制,获得了更高的准确率。然而,由于信息减少和维度分离,这些机制利用了有限的感受野的视觉表征。在这个过程中,它们失去了全局空间通道的相互作用。

本文的研究目标是跨越空间通道维度研究注意力机制。提出了一种“全局”注意力机制,它保留信息以放大“全局”跨维度的交互作用。因此,将所提出的方法命名为全局注意力机制(GAM)。

2相关工作

注意力机制在图像分类任务中的性能改进已经有很多研究。

SENet在抑制不重要的像素时,也带来了效率较低的问题。

CBAM依次进行通道和空间注意力操作,而BAM并行进行。但它们都忽略了通道与空间的相互作用,从而丢失了跨维信息。

考虑到跨维度交互的重要性,TAM通过利用每一对三维通道、空间宽度和空间高度之间的注意力权重来提高效率。然而,注意力操作每次仍然应用于两个维度,而不是全部三个维度。

为了放大跨维度的交互作用,本文提出了一种能够在所有三个维度上捕捉重要特征的注意力机制。

3GAM注意力机制

本文的目标是设计一种注意力机制能够在减少信息弥散的情况下也能放大全局维交互特征。作者采用序贯的通道-空间注意力机制并重新设计了CBAM子模块。整个过程如图1所示,并在公式1和2。给定输入特征映射,中间状态和输出定义为:

a0f77bba8c8ad2f5cb04656815add0af.png

其中和分别为通道注意力图和空间注意力图;表示按元素进行乘法操作。

即插即用 | 超越CBAM,全新注意力机制,GAM不计成本提高精度(附Pytorch实现)..._第2张图片

通道注意力子模块

通道注意子模块使用三维排列来在三个维度上保留信息。然后,它用一个两层的MLP(多层感知器)放大跨维通道-空间依赖性。(MLP是一种编码-解码器结构,与BAM相同,其压缩比为r);通道注意子模块如图2所示:

即插即用 | 超越CBAM,全新注意力机制,GAM不计成本提高精度(附Pytorch实现)..._第3张图片

空间注意力子模块

在空间注意力子模块中,为了关注空间信息,使用两个卷积层进行空间信息融合。还从通道注意力子模块中使用了与BAM相同的缩减比r。与此同时,由于最大池化操作减少了信息的使用,产生了消极的影响。这里删除了池化操作以进一步保留特性映射。因此,空间注意力模块有时会显著增加参数的数量。为了防止参数显著增加,在ResNet50中采用带Channel Shuffle的Group卷积。无Group卷积的空间注意力子模块如图3所示:

即插即用 | 超越CBAM,全新注意力机制,GAM不计成本提高精度(附Pytorch实现)..._第4张图片

Pytorch实现GAM注意力机制

import torch.nn as nn
import torch


class GAM_Attention(nn.Module):
    def __init__(self, in_channels, out_channels, rate=4):
        super(GAM_Attention, self).__init__()

        self.channel_attention = nn.Sequential(
            nn.Linear(in_channels, int(in_channels / rate)),
            nn.ReLU(inplace=True),
            nn.Linear(int(in_channels / rate), in_channels)
        )

        self.spatial_attention = nn.Sequential(
            nn.Conv2d(in_channels, int(in_channels / rate), kernel_size=7, padding=3),
            nn.BatchNorm2d(int(in_channels / rate)),
            nn.ReLU(inplace=True),
            nn.Conv2d(int(in_channels / rate), out_channels, kernel_size=7, padding=3),
            nn.BatchNorm2d(out_channels)
        )

    def forward(self, x):
        b, c, h, w = x.shape
        x_permute = x.permute(0, 2, 3, 1).view(b, -1, c)
        x_att_permute = self.channel_attention(x_permute).view(b, h, w, c)
        x_channel_att = x_att_permute.permute(0, 3, 1, 2)

        x = x * x_channel_att

        x_spatial_att = self.spatial_attention(x).sigmoid()
        out = x * x_spatial_att

        return out


if __name__ == '__main__':
    x = torch.randn(1, 64, 32, 48)
    b, c, h, w = x.shape
    net = GAM_Attention(in_channels=c, out_channels=c)
    y = net(x)

4实验

4.1 CIFAR-100

即插即用 | 超越CBAM,全新注意力机制,GAM不计成本提高精度(附Pytorch实现)..._第5张图片

4.2 ImageNet-1K

即插即用 | 超越CBAM,全新注意力机制,GAM不计成本提高精度(附Pytorch实现)..._第6张图片

4.3 消融实验

即插即用 | 超越CBAM,全新注意力机制,GAM不计成本提高精度(附Pytorch实现)..._第7张图片 即插即用 | 超越CBAM,全新注意力机制,GAM不计成本提高精度(附Pytorch实现)..._第8张图片

5参考

[1].Global Attention Mechanism: Retain Information to Enhance Channel-Spatial Interactions

本文仅做学术分享,如有侵权,请联系删文。

重磅!计算机视觉工坊-学习交流群已成立

扫码添加小助手微信,可申请加入3D视觉工坊-学术论文写作与投稿 微信交流群,旨在交流顶会、顶刊、SCI、EI等写作与投稿事宜。

同时也可申请加入我们的细分方向交流群,目前主要有ORB-SLAM系列源码学习、3D视觉CV&深度学习SLAM三维重建点云后处理自动驾驶、CV入门、三维测量、VR/AR、3D人脸识别、医疗影像、缺陷检测、行人重识别、目标跟踪、视觉产品落地、视觉竞赛、车牌识别、硬件选型、深度估计、学术交流、求职交流等微信群,请扫描下面微信号加群,备注:”研究方向+学校/公司+昵称“,例如:”3D视觉 + 上海交大 + 静静“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进去相关微信群。原创投稿也请联系。

即插即用 | 超越CBAM,全新注意力机制,GAM不计成本提高精度(附Pytorch实现)..._第9张图片

▲长按加微信群或投稿

即插即用 | 超越CBAM,全新注意力机制,GAM不计成本提高精度(附Pytorch实现)..._第10张图片

▲长按关注公众号

3D视觉从入门到精通知识星球:针对3D视觉领域的视频课程(三维重建系列三维点云系列结构光系列手眼标定相机标定、激光/视觉SLAM、自动驾驶等)、知识点汇总、入门进阶学习路线、最新paper分享、疑问解答五个方面进行深耕,更有各类大厂的算法工程人员进行技术指导。与此同时,星球将联合知名企业发布3D视觉相关算法开发岗位以及项目对接信息,打造成集技术与就业为一体的铁杆粉丝聚集区,近4000星球成员为创造更好的AI世界共同进步,知识星球入口:

学习3D视觉核心技术,扫描查看介绍,3天内无条件退款

即插即用 | 超越CBAM,全新注意力机制,GAM不计成本提高精度(附Pytorch实现)..._第11张图片

 圈里有高质量教程资料、可答疑解惑、助你高效解决问题

觉得有用,麻烦给个赞和在看~

你可能感兴趣的:(算法,计算机视觉,人工智能,机器学习,深度学习)