labelImg的VOC格式转化为labelme的json格式

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档

文章目录

  • 前言
  • 一、安装labelme
  • 二、VOC转化为JSON的代码
    • 1.代码:
    • 2.用labelme查看转化完成的文件


前言

  由于之前使用的是LabelImg进行的图像检测的标注工作,后来有需要进行关键点标注,最初采用的方法是LabelImg矩形框的左下点坐标和右下点坐标来代替关键点的坐标,发现标注的不是很准确。就想着用labelme软件来进行相应的标注,但是之前标注了太多的图片,重新标注的话费时费力,就采用代码将之前LabelImg标注的VOC格式转化为labelme的json格式。

一、安装labelme

  本人使用的MAC电脑,在anaconda的环境下面首先创建一个虚拟环境:
conda create–name=labelme python=3.6
激活环境:
  source activate labelme
安装labelme:
  pip install labelme==4.5.6
打开labelme:
  labelme
打开后界面如下
labelImg的VOC格式转化为labelme的json格式_第1张图片

二、VOC转化为JSON的代码

1.代码:

import argparse
import glob
import os
import xml.etree.ElementTree as ET
import json
from tqdm import tqdm

def parse_args():
    """
        参数配置
    """
    parser = argparse.ArgumentParser(description='xml2json')
    parser.add_argument('--raw_label_dir', help='the path of raw label', default='')
    parser.add_argument('--pic_dir', help='the path of picture', default='')
    parser.add_argument('--save_dir', help='the path of new label', default='')
    args = parser.parse_args()
    return args

def read_xml_gtbox_and_label(xml_path):
    """
        读取xml内容
    """

    tree = ET.parse(xml_path)
    root = tree.getroot()
    size = root.find('size')
    width = int(size.find('width').text)
    height = int(size.find('height').text)
    depth = int(size.find('depth').text)
    points = []
    for obj in root.iter('object'):
        cls = obj.find('name').text
        pose = obj.find('pose').text
        xmlbox = obj.find('bndbox')
        xmin = float(xmlbox.find('xmin').text)
        xmax = float(xmlbox.find('xmax').text)
        ymin = float(xmlbox.find('ymin').text)
        ymax = float(xmlbox.find('ymax').text)
        box = [xmin, ymin, xmax, ymax]
        point = [cls, box]
        points.append(point)
    return points, width, height

def main():
    """
        主函数
    """
    args = parse_args()
    labels = glob.glob(args.raw_label_dir + '/*.xml')
    for i, label_abs in tqdm(enumerate(labels), total=len(labels)):
        _, label = os.path.split(label_abs)
        label_name = label.rstrip('.xml')
        # img_path = os.path.join(args.pic_dir, label_name + '.jpg')
        img_path = label_name + '.jpg'
        points, width, height = read_xml_gtbox_and_label(label_abs)
        json_str = {}
        json_str['version'] = '4.5.6'
        json_str['flags'] = {}
        shapes = []
        for i in range(len(points)):
        	# 判断是否是左下角的点为关键点
            if points[i][0] == "left head":
                shape = {}
                shape['label'] = 'head'
                shape['points'] = [[points[i][1][0], points[i][1][3]]]
                shape['group_id'] = None
                # 类型为点
                shape['shape_type'] = 'point'
                shape['flags'] = {}
                shapes.append(shape)
            # 判断是否是右下角的点是关键点
            elif points[i][0] == "right head":
                shape = {}
                shape['label'] = 'head'
                shape['points'] = [[points[i][1][2], points[i][1][3]]]
                shape['group_id'] = None
                shape['shape_type'] = 'point'
                shape['flags'] = {}
                shapes.append(shape)
            # 其余的情况
            else:
                shape = {}
                shape['label'] = points[i][0]
                shape['points'] = [[points[i][1][0], points[i][1][1]],
                                    [points[i][1][2], points[i][1][3]]]
                shape['group_id'] = None
                # labelIMG的标注类型基本都为长方形
                shape['shape_type'] = 'rectangle'
                shape['flags'] = {}
                shapes.append(shape)
        json_str['shapes'] = shapes
        json_str['imagePath'] = img_path
        json_str['imageData'] = None
        json_str['imageHeight'] = height
        json_str['imageWidth'] = width
        with open(os.path.join(args.save_dir, label_name + '.json'), 'w') as f:
            json.dump(json_str, f, indent=2)

if __name__ == '__main__':
    main()

2.用labelme查看转化完成的文件

  转化完成的json文件和图片放在一个文件下,目的是使得在json文件里面的imagePath要对应的上。
特别注意的是,使用labelme查看jason文件的时候必须加上 --nodata这个参数,即:
labelme --nodata
不然imageData的参数无法对应上会报错。如下所示:

labelImg的VOC格式转化为labelme的json格式_第2张图片
成功打开之后图片如下所示
转化前的图片:

转化后的图片:

你可能感兴趣的:(python)