卷积神经网络的应用实例,卷积神经网络实例讲解

卷积神经网络通俗理解

卷积神经网络(ConvolutionalNeuralNetworks,CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(FeedforwardNeuralNetworks),是深度学习(deeplearning)的代表算法之一。

卷积神经网络具有表征学习(representationlearning)能力,能够按其阶层结构对输入信息进行平移不变分类(shift-invariantclassification),因此也被称为“平移不变人工神经网络。

谷歌人工智能写作项目:神经网络伪原创

求《深度学习原理与TensorFlow实践》全文免费下载百度网盘资源,谢谢~

写作猫

《深度学习原理与TensorFlow实践》百度网盘pdf最新全集下载:链接:?pwd=4cms提取码:4cms简介:《深度学习原理与TensorFlow实践》主要介绍了深度学习的基础原理和TensorFlow系统基本使用方法。

TensorFlow是目前机器学习、深度学习领域最优秀的计算系统之一,《深度学习原理与TensorFlow实践》结合实例介绍了使用TensorFlow开发机器学习应用的详细方法和步骤。

同时,《深度学习原理与TensorFlow实践》着重讲解了用于图像识别的卷积神经网络和用于自然语言处理的循环神经网络的理论知识及其TensorFlow实现方法,并结合实际场景和例子描述了深度学习技术的应用范围与效果。

卷积神经网络算法是什么?

一维构筑、二维构筑、全卷积构筑。

卷积神经网络(ConvolutionalNeuralNetworks,CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(FeedforwardNeuralNetworks),是深度学习(deeplearning)的代表算法之一。

卷积神经网络具有表征学习(representationlearning)能力,能够按其阶层结构对输入信息进行平移不变分类(shift-invariantclassification),因此也被称为“平移不变人工神经网络(Shift-InvariantArtificialNeuralNetworks,SIANN)”。

卷积神经网络的连接性:卷积神经网络中卷积层间的连接被称为稀疏连接(sparseconnection),即相比于前馈神经网络中的全连接,卷积层中的神经元仅与其相邻层的部分,而非全部神经元相连。

具体地,卷积神经网络第l层特征图中的任意一个像素(神经元)都仅是l-1层中卷积核所定义的感受野内的像素的线性组合。

卷积神经网络的稀疏连接具有正则化的效果,提高了网络结构的稳定性和泛化能力,避免过度拟合,同时,稀疏连接减少了权重参数的总量,有利于神经网络的快速学习,和在计算时减少内存开销。

卷积神经网络中特征图同一通道内的所有像素共享一组卷积核权重系数,该性质被称为权重共享(weightsharing)。

权重共享将卷积神经网络和其它包含局部连接结构的神经网络相区分,后者虽然使用了稀疏连接,但不同连接的权重是不同的。权重共享和稀疏连接一样,减少了卷积神经网络的参数总量,并具有正则化的效果。

在全连接网络视角下,卷积神经网络的稀疏连接和权重共享可以被视为两个无限强的先验(pirior),即一个隐含层神经元在其感受野之外的所有权重系数恒为0(但感受野可以在空间移动);且在一个通道内,所有神经元的权重系数相同。

深度学习中的卷积网络到底怎么回事

这两个概念实际上是互相交叉的,例如,卷积神经网络(Convolutionalneuralnetworks,简称CNNs)就是一种深度的监督学习下的机器学习模型,而深度置信网(DeepBeliefNets,简称DBNs)就是一种无监督学习下的机器学习模型。

深度学习的概念源于人工神经网络的研究。含多隐层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。

深度学习的概念由Hinton等人于2006年提出。基于深信度网(DBN)提出非监督贪心逐层训练算法,为解决深层结构相关的优化难题带来希望,随后提出多层自动编码器深层结构。

此外Lecun等人提出的卷积神经网络是第一个真正多层结构学习算法,它利用空间相对关系减少参数数目以提高训练性能。

《深度学习原理与TensorFlow实践》pdf下载在线阅读全文,求百度网盘云资源

《深度学习原理与TensorFlow实践》百度网盘pdf最新全集下载:链接:?pwd=4cms提取码:4cms简介:《深度学习原理与TensorFlow实践》主要介绍了深度学习的基础原理和TensorFlow系统基本使用方法。

TensorFlow是目前机器学习、深度学习领域最优秀的计算系统之一,《深度学习原理与TensorFlow实践》结合实例介绍了使用TensorFlow开发机器学习应用的详细方法和步骤。

同时,《深度学习原理与TensorFlow实践》着重讲解了用于图像识别的卷积神经网络和用于自然语言处理的循环神经网络的理论知识及其TensorFlow实现方法,并结合实际场景和例子描述了深度学习技术的应用范围与效果。

深度学习算法有哪些卷积神经网络

深度学习是什么?求科普。

深度学习是一类机器学习方法,可实例化为深度学习器,所对应的设计、训练和使用方法集合称为深度学习。

深度学习器由若干处理层组成,每层包含至少一个处理单元,每层输出为数据的一种表征,且表征层次随处理层次增加而提高。深度的定义是相对的。

针对某具体场景和学习任务,若学习器的处理单元总数和层数分别为M和N,学习器所保留的信息量或任务性能超过任意层数小于N且单元总数为M的学习器,则该学习器为严格的或狭义的深度学习器,其对应的设计、训练和使用方法集合为严格的或狭义的深度学习。

广义的深度学习器及对应的深度学习方法可依据经验和局部最优化设计,不进行上述严格的遍历比较。我们最近和中科院专家联合推出了AI深度学习课程,感兴趣的可以了解一下。

常见的深度学习算法主要有哪些?

深度学习常见的3种算法有:卷积神经网络、循环神经网络、生成对抗网络。

卷积神经网络(ConvolutionalNeuralNetworks,CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(FeedforwardNeuralNetworks),是深度学习的代表算法之一。

循环神经网络(RecurrentNeuralNetwork,RNN)是一类以序列数据为输入,在序列的演进方向进行递归且所有节点(循环单元)按链式连接的递归神经网络。

生成对抗网络(GAN,GenerativeAdversarialNetworks)是一种深度学习模型,是最近两年十分热门的一种无监督学习算法。

 

你可能感兴趣的:(cnn,深度学习,神经网络,算法)