阿尔法围棋(AlphaGo)是一款围棋人工智能程序。这个程序利用“价值网络”去计算局面,用“策略网络”去选择下子。 阿尔法围棋(AlphaGo)是通过两个不同神经网络“大脑”合作来改进下棋。这些大脑是多层神经网络跟那些Google图片搜索引擎识别图片在结构上是相似的。它们从多层启发式二维过滤器开始,去处理围棋棋盘的定位,就像图片分类器网络处理图片一样。经过过滤,13 个完全连接的神经网络层产生对它们看到的局面判断。这些层能够做分类和逻辑推理。
这些网络通过反复训练来检查结果,再去校对调整参数,去让下次执行更好。这个处理器有大量的随机性元素,所以人们是不可能精确知道网络是如何“思考”的,但更多的训练后能让它进化到更好。
第一大脑:落子选择器 (Move Picker)
阿尔法围棋(AlphaGo)的第一个神经网络大脑是“监督学习的策略网络(Policy Network)” ,观察棋盘布局企图找到最佳的下一步。事实上,它预测每一个合法下一步的最佳概率,那么最前面猜测的就是那个概率最高的。这可以理解成“落子选择器”。
第二大脑:棋局评估器 (Position Evaluator)
阿尔法围棋(AlphaGo)的第二个大脑相对于落子选择器是回答另一个问题。不是去猜测具体下一步,它预测每一个棋手赢棋的可能,再给定棋子位置情况下。这“局面评估器”就是“价值网络(Value Network)”,通过整体局面判断来辅助落子选择器。这个判断仅仅是大概的,但对于阅读速度提高很有帮助。通过分类潜在的未来局面的“好”与“坏”,AlphaGo能够决定是否通过特殊变种去深入阅读。如果局面评估器说这个特殊变种不行,那么AI就跳过阅读在这一条线上的任何更多落子。
谷歌人工智能写作项目:小发猫
阿尔法狗(AlphaGo)是第一个击败人类职业围棋选手、第一个战胜围棋世界冠军的人工智能程序,由谷歌(Google)公司的团队开发谷歌的两个神经网络。其主要工作原理是“深度学习”。
2017年5月,在中国乌镇围棋峰会上,它与排名世界第一的世界围棋冠军柯洁对战,以3比0的总比分获胜。围棋界公认阿尔法围棋的棋力已经超过人类职业围棋顶尖水平。
起源
围棋,起源于中国,中国古代称为“弈”,可以说是棋类之鼻祖,围棋至今已有4000多年的历史。据先秦典籍《世本》记载:“尧造围棋,丹朱善之。”晋张华在《博物志》中继承并发展了这种说法:“尧造围棋,以教子丹朱。若白:舜以子商均愚,故作围棋以教之。”
1964年版的《大英百科全书》就采纳这种说法,甚至将其确切年代定在公元前2356年。
唐代诗人皮日休所作的《原弈》认为:“弈之始作,必起自战国,有害诈争伪之道,当纵横者流之作矣。岂曰尧哉!”
明朝陈仁锡在《潜确类书》中又提出“乌曹作博、围棋”。乌曹相传是尧的臣子,有的人又说他是夏桀的臣子。后来,董斯张的《广博物志》、张英的《渊鉴类函》等也采录了这种说法。
谷歌的神经网络翻译(GNMT)的性能与传统的基于词组的翻译(PBMT)相比,的确有了显著的提高。在不同的语言对上,GNMT把PBMT与人工翻译的鸿沟缩小了 58% ~ 87%,在某些语言对上可以说接近了人工翻译的水平。
但是,说GNMT将取代人工翻译,还为时尚早。GNMT仍然时不时地会犯一些很傻的错误,论文的最后一页列举了一些,机智的网友们也发现了不少。实际场合的翻译,尤其是书面翻译,对这样的错误容忍度很低。
GNMT的贡献主要还是在不为用户所了解的技术方面。神经网络翻译与PBMT相比,模型「清爽」了许多,一个神经网络搞定一切,只是一直以来在性能和速度方面比不上PBMT。GNMT把神经网络翻译在性能和速度方面的潜力发挥了出来,我觉得神经网络翻译在不久的将来将成为主流。
阿尔法狗属于围棋只能程序,也属于人工智能机器。AlphaGo程序是美国谷歌公司旗下DeepMind团队开发的一款人机对弈的围棋程序。游戏是人工智能最初开发的主要阵地之一,比如博弈游戏就要求人工智能更聪明、更灵活,用更接近人类的思考方式解决问题。
AlphaGo背后是一群杰出的计算机科学家,确切地说,是机器学习领域的专家。科学家利用神经网络算法,将棋类专家的比赛记录输入给计算机,并让计算机自己与自己进行比赛,在这个过程中不断学习训练。
扩展资料:
AlphaGo通过蒙特卡洛树搜索算法和两个深度神经网络合作来完成下棋。在与李世石对阵之前,谷歌首先用人类对弈的近3000万种走法来训练“阿尔法狗”的神经网络,让它学会预测人类专业棋手怎么落子。然后更进一步,让AlphaGo自己跟自己下棋,从而又产生规模庞大的全新的棋谱。
它们的任务在于合作‘挑选’出那些比较有前途的棋步,抛弃明显的差棋,从而将计算量控制在计算机可以完成的范围内。在本质上,这和人类棋手所做的是一样的。
参考资料来源:
在加入谷歌一年后,1月18日凌晨,谷歌云负责人、首席科学家李飞飞通过自己的推特账号和博客宣布了谷歌云取得的里程碑进展:可自动设计、建立机器学习模型的服务——AutoML Vision。
“我很荣幸地宣布AutoML Vision面世。这是一款能让每个人都有能力构建机器学习模型,却无需机器学习经验的产品。这是“人工智能民主化”的重要进展!也是令人振奋的团队合作结果。”李飞飞在自己的推特账号上写道。
这款面向公众的产品,意味着谷歌正在努力让人工智能成为每个人都会使用且容易上手的工具,也降低企业开发人工智能的门槛。除了在自己的推特上介绍此款新产品外,李飞飞还与谷歌人工智能研发负责人李佳共同撰写了博客,详细介绍了新产品。
AutoML Vision是一款提供自定义图像识别系统自动开发的服务。用户只需要将自己的数据上传,就可以直接在谷歌云上训练和管理模型。也就是说,即使是没有机器学习专业知识的的人,只需了解模型基本概念,就能借这项服务轻松搭建定制化的图像识别模型。但目前谷歌并未透露该服务如何收费。
谷歌的cloud_auto_ml如何使用?
目前,迪士尼已通过AutoML建立图片分类模型,依据角色、种类和颜色等分类标示产品,并导入搜寻的功能中,让消费者搜寻商品更加方便且准确。另外,美国流行服装零售商Urban Outfitters也通过AutoML来分类商品。除了图像识别,谷歌未来还计划将AutoML服务拓展到翻译、视频和自然语言处理等领域。
在博客中,两位女科学家认为谷歌这款产品的优势在于以下三点:一是即使用户的机器学习专业知识有限,也可以获得更准确的模型。二是能更快速的建立模型,用户可以在几分钟内或者在一天内构建完整的能用的模型。三是易于使用,用户操作的界面简洁清晰。
谷歌博客截图
这些优势也在一定程度上解决了当前人工智能在工业界发展的一些瓶颈。首先,从目前的情况看,世界上只有少数企业能够支付得起人工智能以及机器学习的人才招募和研发预算,这意味着企业可以创建的高级机器学习模型非常有限。其次,即便是有能力的公司,也需要大量的精力来管理和构建自定义的机器学习模型和其中复杂的研发过程。
AutoML Vison操作界面
那么谷歌是如何做到的?AutoML由控制器(Controller)和子网络(Child)2个神经网络组成,控制器生成子模型架构,子模型架构执行特定的任务训练并评估模型的优劣反馈给控制器,控制器将会将此结果作为下一个循环修改的参考。重复执行数千次“设计新架构、评估、回馈、学习”的循环后,控制器能设计出最准确的模型架构。
2017年3月份,谷歌就推出了机器学习服务Google Cloud Machine Learning Engine,帮助具有机器学习专业知识的开发人员轻松构建适用于任何规模、任何类型数据机器学习模型。不过,那时候的机器学习服务需要使用大量的数据,才能训练出一般(General)的预测模型,难以符合每家企业的需求。这次推出的AutoML则更进一步,直接为企业提供机器学习技术来建立自家的模型,也推动了谷歌“人工智能民主化”的战略目标。
不过,虽然谷歌称AutoML是市面上唯一提供类似服务的产品,但此前Clarif.ai、微软的认知服务,以及IBM的Watson视觉识别也能让曾提供给用户定制预先训练好的视觉、语音识别和决策模型的服务。
阿尔法围棋(AlphaGo)是一款围棋人工智能程序,由位于英国伦敦的谷歌(Google)旗下DeepMind公司的戴维·西尔弗、艾佳·黄和戴密斯·哈萨比斯与他们的团队开发,这个程序利用“价值网络”去计算局面,用“策略网络”去选择下子。2015年10月阿尔法围棋以5:0完胜欧洲围棋冠军、职业二段选手樊麾;2016年3月对战世界围棋冠军、职业九段选手李世石。
阿尔法围棋(AlphaGo)是一款围棋人工智能程序。这个程序利用“价值网络”去计算局面,用“策略网络”去选择下子。
深度学习
阿尔法围棋(AlphaGo)的主要工作原理是“深度学习”。“深度学习”是指多层的人工神经网络和训练它的方法。一层神经网络会把大量矩阵数字作为输入,通过非线性激活方法取权重,再产生另一个数据集合作为输出。这就像生物神经大脑的工作机理一样,通过合适的矩阵数量,多层组织链接一起,形成神经网络“大脑”进行精准复杂的处理,就像人们识别物体标注图片一样。
两个大脑
阿尔法围棋(AlphaGo)是通过两个不同神经网络“大脑”合作来改进下棋。这些大脑是多层神经网络跟那些Google图片搜索引擎识别图片在结构上是相似的。它们从多层启发式二维过滤器开始,去处理围棋棋盘的定位,就像图片分类器网络处理图片一样。经过过滤,13 个完全连接的神经网络层产生对它们看到的局面判断。这些层能够做分类和逻辑推理。
这些网络通过反复训练来检查结果,再去校对调整参数,去让下次执行更好。这个处理器有大量的随机性元素,所以人们是不可能精确知道网络是如何“思考”的,但更多的训练后能让它进化到更好。
TPU 的需求大约真正出现在 6 年之前,那时我们在所有产品之中越来越多的地方已开始使用消耗大量计算资源的深度学习模型;昂贵的计算令人担忧。假如存在这样一个场景,其中人们在 1 天中使用谷歌语音进行 3 分钟搜索,并且我们要在正使用的处理器中为语音识别系统运行深度神经网络,那么我们就不得不翻倍谷歌数据中心的数量。
TPU 将使我们快速做出预测,并使产品迅速对用户需求做出回应。TPU 运行在每一次的搜索中;TPU 支持作为谷歌图像搜索(Google Image Search)、谷歌照片(Google Photo)和谷歌云视觉 API(Google Cloud Vision API)等产品的基础的精确视觉模型;TPU 将加强谷歌翻译去年推出的突破性神经翻译质量的提升;并在谷歌 DeepMind AlphaGo 对李世乭的胜利中发挥了作用,这是计算机首次在古老的围棋比赛中战胜世界冠军。
我们致力于打造最好的基础架构,并将其共享给所有人。我们期望在未来的数周和数月内分享更多的更新。
Google 开源了其第二代深度学习技术 TensorFlow——被使用在 Google
搜索、图像识别以及邮箱的深度学习框架。这在相关媒体圈、工程师圈、人工智能公司、人工智能研究团队里有了一些讨论。比较有趣的是,微软亚洲研究院立刻向
媒体发邮件表示,我们发布了开源分布式机器学习工具包(DMTK)。
对于大众来说,这件事让人
“困惑”。从 “深度学习” 到 “分布式系统”,太多概念大众一知半解,现今给出的资料又让人难以理解。而对于 “Google 开源
TensorFlow” 这一事件,各个公司、团队、学术权威也是众说纷纭。因此,出门问问为大家 “破雾”,并讲一讲这次开源意味着什么。
什么是深度学习?
深
度学习系统是什么?深度学习理论于 2006年 被提出,它通过模拟 “人脑的神经网络”
来解释图像、声音和文本等数据。但是目前的计算机还达不到模拟人脑数量庞大的神经元(千亿级),因此便有了用到成千上万大型计算机(计算平台集群)来吸收
数据对其进行自动分类的 “分布式深度学习系统”。
TensorFlow 的起源和此次开源事件
Google
将自家研发的深度学习系统命名为 “DistBelief”,它使得 Google
能够同时处理成千上万台大型计算机的数据,构建更大型的神经网络和大规模训练。Google
的搜索、图像识别及邮箱等均采用了该技术。一般情况下,深度学习系统都需要先设定好 feature(特征),再学习如何分辨。但
Google DistBelief 神奇的地方在于,“Google Brain” 开发团队 “XLab” 曾用它在未事先获取 “猫的特征描述”
信息的情况下,从大量 YouTube 视频中区分出了哪些是猫的视频。这意味着深度学习系统 “DistBelief” 自行总结出了猫的
feature(特征)!虽然这个案例的识别范围、识别率有待提高(81.7%),但作为人工智能最经典案例之一,为人工智能翻开了新的篇章。而 “猫”
的事件,也让曾经的 Google Brain 开发团队 “XLab” 的核心人员、现在被李彦宏挖到百度的吴恩达得到了
“Google Brain” 之父的美誉。不过,时代总是进步,而 “DistBelief” 有缺陷。
Google
称,虽然 DistBelief 非常成功,但它仅仅以神经网络为目的、十分局限,而且很难进行配置。另外,DistBelief 牢牢绑定在
Google 的内部基础设施上,几乎不可能将代码与外界共享。因此,本文的主角,Google 的第二代深度学习系统 “TensorFlow”
横空出世了。
Google 表示,TensorFlow
在设计上尤其针对克服 DistBelief 的短板,灵活、更通用、易使用、更快,而且完全开源。TensorFlow
可以被架设在智能手机这样小的设备上,甚至仅一块电路板上,更灵活; TensorFlow
可以被使用在很多计算平台,无论是智能手机还是大型计算机、单个 CPU / GPU 计算机还是成百上千 GPU 卡组成的分布式系统,ARM 的还是
X86 的构架,更通用;TensorFlow 支持多种编程语言,提供了很多深度学习模型库,易使用;在很多指标上,TensorFlow 要比
DistBelief 要快一倍,更快。但是,学术界和工程界的一些朋友并不喜欢这个 “刚刚闯入” 开源界的 “小伙子”,判了它 “意义不大”
的死刑。“TensorFlow” 之所以 “开源” 却不讨好,是因为 TensorFlow 不是第一个被开源的深度学习系统,并且目前只开源了
“单机版”,而非能够识别猫的 “分布式版本”。除了并非第一以及只开源了单机版代码这两点外,Google 开源 TensorFlow
这件事最被人诟病的地方在于,在 “用事实”、“用数据” 说话的学术界、工程界,Google 并未用 “数据对比” 证明 TensorFlow 的
“灵活、更通用、易使用”。
对于 TensorFlow,出门问问的看法是,TensorFlow 对学术界意义不大,但是对工程界意义挺大。
TensorFlow 对工程界有意义:其它开源工具虽然众多 但对工程界很难有效使用
Google
这次开源的 TensorFlow 是一种人工智能(更具体的说是深度学习)编程语言或计算框架,学术界从来都不缺少类似的开源工具,尤其是
“单机版工具包” 有很多。但是学术界的工具往往更多专注在核心算法上,在系统和工程方面比较欠缺,工业界很难直接有效的使用,而 Google 的
TensorFlow 在架构设计,跨平台可移植性,算法可扩展性等等偏工程方面会做的比较好。所以,TensorFlow
对学术界的帮助比较小,但对工业界的帮助有很大潜在可能性。比如语音识别、自然语言理解、计算机视觉、广告等等都可以应用这种深度学习算法,Google
也因为深度学习系统的应用使得 Google 语音识别水平提高 25%。
有意义归有意义,意义的大小
是另一回事了。在这个信息交流频繁的时代,没有公司能随便制造一个具有超大意义的事件或者跨时代的黑科技产品。对于工程界,TensorFlow
有意义但又不是神乎其神的东西,尤其是 Google 目前开源的 “单机版” 的 TensorFlow
意义要小一些。因为在工程界里,若要完成一整件事,如识别语音,TensorFlow
这种通用深度学习框架的存在更多是锦上添花,而非决定根本。比如说在一个可以应用的语音识别系统里, 除了深度学习算法外,还有很多工作是专业领域相关的
算法以及海量数据收集和工程系统架构的搭建。
其实,对于中国来说,TensorFlow
还有一个意义。在人工智能大潮下许多人和公司想入局,但大都没有能力理解并开发一个与国际同步的深度学习系统,而 TensorFlow
的存在会大大降低深度学习在各个行业中的应用难度。至于弄懂 TensorFlow 要花费大量时间的问题,就像很多公司用 Linux 或者
hadoop(一种分布式系统基础架构)但很少有公司弄懂了所有源代码一样,可以把 TensorFlow
当成一个黑盒,先快速用起来,之后再根据数据和专业领域知识来调整。
总的来说,如果 Google 按照其所说的那样,在未来完全开源 TensorFlow——包括其 “分布式版本”,那么 TensorFlow 对工程界的影响会更明显些——尤其对中国创业公司来说。
一个月前,DeepMind创始人Demis Hassabis曾说道很快会有关于围棋研究的惊喜,而1月28日的《Nature》杂志即将以封面论文的形式介绍Google旗下人工智能公司DeepMind开发的一款名为AlphaGo的人工智能,它已经击败了欧洲围棋冠军,并将于3月与世界冠军李世乭对战。该程序采用了两个深度神经网络,policy network与value network,极大地降低了需要考虑的搜索空间的复杂度,前者降低搜索的广度,后者降低搜索的深度,很像人脑在下围棋时凭直觉快速锁定策略的思维。
这么说起给一点时间,巅峰的吴清源,李昌镐这类人物(即使不断学习)也是下不过电脑的了? (我指的电脑就是2015一台中等配置的PC这样,不是服务器集群,类似普通电脑跑Pocket Fritz 4)
今天(3-12-2016) AlphaGo 已经3:0领先Lee Sedol了
这个并不是太出人意料。我记得十年前就有人说,十年内这个问题可以解决。可能那时候他就已经有点思路了吧。
这个问题能解决到这个程度,Google的确做出了很大的贡献,我想很多同样看上去很难的问题也并不是不能解决,而是我们愿不愿意解决,愿意花多大的精力在上面。我觉得这点启发非常重要,尤其是在深度网络这类新技术出现的时候,有很多地方简单地应用一下就能有新的突破。
老实说,我看了AlphaGo的思路,跟我之前的思路差不了太多,我在2015年1月份就看过一篇利用卷积神经网络来下棋的论文(神经网络可能终将在围棋上打败人类),并且有种豁然开朗的感觉,还想出了改进的思路(论文中的程序实际上有比较明显的缺陷,而去掉其中的缺陷就是一条更为完善的思路),真正的理论层面的突破是那篇论文,那篇论文写出来,就决定了今天只用了一年左右的时间AlphaGo能达到这个程度,Google的贡献在于将理论更好地改进和实践了,他们更有实力来解决这样的问题,不是像那篇论文里的程序,使用比较纯粹的神经网络,那样想要达到顶尖水准很有难度。
值得反省的是,为什么围棋作为东方人的游戏,却不是我们自己来解决这个问题?我觉得国内一定有人看到解决思路了,既然我这种业余爱好者都能看出点眉目。