翻译文章链接:PyTorch数据集和数据加载器
一、数据集和数据加载器
二、加载数据集
下面是如何从 TorchVision 加载Fashion-MNIST数据集的示例。Fashion-MNIST 是 Zalando 文章图像的数据集,由 60,000 个训练示例和 10,000 个测试示例组成。每个示例都包含 28×28 灰度图像和来自 10 个类别之一的相关标签。
我们使用以下参数加载FashionMNIST 数据集:
代码如下:
import torch
from torch.utils.data import Dataset
from torchvision import datasets
from torchvision.transforms import ToTensor
import matplotlib.pyplot as plt
training_data = datasets.FashionMNIST(
root="data",
train=True,
download=True,
transform=ToTensor()
)
test_data = datasets.FashionMNIST(
root="data",
train=False,
download=True,
transform=ToTensor()
)
其中root=“data” 可以改成windows的一下路径,比如E://pytorch//data_gather,就会下载FashionMNIST 数据集到这个路径底下,如下图所示:
其中可以看到下载了对应的gz压缩包和对应的数据集,如下图所示:
三、迭代和可视化数据集:
我们可以Datasets像列表一样手动索引:training_data[index]. 我们matplotlib用来可视化训练数据中的一些样本。
代码如下:
labels_map = {
0: "T-Shirt",
1: "Trouser",
2: "Pullover",
3: "Dress",
4: "Coat",
5: "Sandal",
6: "Shirt",
7: "Sneaker",
8: "Bag",
9: "Ankle Boot",
}
figure = plt.figure(figsize=(8, 8))
cols, rows = 3, 3
for i in range(1, cols * rows + 1):
sample_idx = torch.randint(len(training_data), size=(1,)).item()
img, label = training_data[sample_idx]
figure.add_subplot(rows, cols, i)
plt.title(labels_map[label])
plt.axis("off")
plt.imshow(img.squeeze(), cmap="gray")
plt.show()
注:这里要结合第二步的代码,即加载数据集那一步,还有python引用的库都在那里
自定义 Dataset 类必须实现三个函数:init、len__和__getitem。看看这个实现;FashionMNIST 图像存储在一个目录img_dir中,它们的标签分别存储在一个 CSV 文件annotations_file中。
在接下来的部分中,我们将分解每个函数中发生的事情。代码如下:
import os
import pandas as pd
from torchvision.io import read_image
from torch.utils.data import Dataset
class CustomImageDataset(Dataset):
def __init__(self, annotations_file, img_dir, transform=None, target_transform=None):
self.img_labels = pd.read_csv(annotations_file)
self.img_dir = img_dir
self.transform=transform
self.target_transform = target_transform
def __len(self):
return len(self.img_labels)
def __getitem__(self, idx):
img_path = os.path.join(self.img_dir, self.img_labels.iloc[idx, 0])
image = read_image(img_path)
label = self.img_labels.iloc[idx, 1]
if self.transform:
image = self.transform(image)
if self.target_transform:
label = self.target_transform(label)
return image, label
labels.csv 文件如下所示:
tshirt1.jpg, 0
tshirt2.jpg, 0
......
ankleboot999.jpg, 9
def __init__(self, annotations_file, img_dir, transform=None, target_transform=None):
self.img_labels = pd.read_csv(annotations_file)
self.img_dir = img_dir
self.transform = transform
self.target_transform = target_transform
def __len__(self):
return len(self.img_labels)
def __getitem__(self, idx):
img_path = os.path.join(self.img_dir, self.img_labels.iloc[idx, 0])
image = read_image(img_path)
label = self.img_labels.iloc[idx, 1]
if self.transform:
image = self.transform(image)
if self.target_transform:
label = self.target_transform(label)
return image, label
五、使用 DataLoaders 为训练准备数据
检索我们数据集的Dataset特征并一次标记一个样本。在训练模型时,我们通常希望以“小批量”的形式传递样本,在每个 epoch 重新洗牌以减少模型过拟合,并使用 Python multiprocessing 加速数据检索。
DataLoader是一个可迭代的,它在一个简单的 API 中为我们抽象了这种复杂性。代码如下:
from torch.utils.data import DataLoader
train_dataloader = DataLoader(training_data, batch_size=64, shuffle=True)
test_dataloader = DataLoader(test_data, batch_size=64, shuffle=True)
六、遍历 DataLoader
我们已将该数据集加载到 中,DataLoader并且可以根据需要遍历数据集。下面的每次迭代都会返回一批train_features和train_labels(分别包含batch_size=64特征和标签)。因为我们指定shuffle=True了 ,所以在我们遍历所有批次之后,数据被打乱(为了更细粒度地控制数据加载顺序,请查看Samplers)。
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor
import matplotlib.pyplot as plt
training_data = datasets.FashionMNIST(
root="E://pytorch//data_gather",
train=True,
download=True,
transform=ToTensor()
)
test_data = datasets.FashionMNIST(
root="E://pytorch//data_gather",
train=False,
download=True,
transform=ToTensor()
)
train_dataloader = DataLoader(training_data, batch_size=64, shuffle=True)
test_datalader = DataLoader(test_data, batch_size=64, shuffle=True)
# Display image and label.
train_features, train_labels = next(iter(train_dataloader))
print(f"Feature batch shape:{train_features.size()}")
print(f"Labels batch shape:{train_labels.size()}")
img = train_features[0].squeeze()
label = train_labels[0]
plt.imshow(img, cmap="gray")
plt.show()
print(f"Label:{label}")