- OpenCV 100道面试题及参考答案(7万字长文)
大模型大数据攻城狮
大厂面试大厂面经android面试计算机视觉opencv实时互动webrtc
OpenCV简介OpenCV(OpenSourceComputerVisionLibrary)是一个开源的计算机视觉库,它提供了丰富的函数和工具,用于处理图像和视频。OpenCV最初由英特尔公司开发,现在由一个开源社区维护和发展。主要功能和用途OpenCV的主要功能包括图像和视频处理、特征提取、目标检测、人脸识别、物体跟踪等。它可以用于各种领域,如机器人技术、医学影像、安全监控、自动驾驶等。在图像
- 数值计算模型范围的取值与思考--水泵水轮机压力脉动问题--学术论文模式--个人经验总结
lalalaO°C_m
经验分享-高效率!笔记算法数据分析经验分享信号处理
数值计算模型范围的取值与思考——水泵水轮机压力脉动问题目录数值计算模型范围的取值与思考——水泵水轮机压力脉动问题写在前面摘要1研究背景2研究现状3研究方法3.1模型结构参数的选取3.2数值计算方法和参数3.3计算工况参数3.4求解器参数4总结与思考参考文献写在前面压力脉动是引起水力机械振动进而影响水泵水轮机安全运行的重要原因,使用数值模拟模型能够实现高精度且高效的压力脉动特性的计算研究。本文是博主
- 飞书多维表格+DeepSeek R1:打工人必备的AI神器,效率暴涨1000%![特殊字符]
sherlock__cc
人工智能飞书
导语当飞书多维表格遇上国产最强推理大模型DeepSeekR1,会擦出怎样的火花?本文手把手教你用「零代码」实现批量文案改写、论文精读、视频脚本生成。一、颠覆认知的三大核心优势1.批量处理的工业级效率单次处理1000+条数据,告别传统API逐条调用支持跨表格数据联动(如从CRM系统自动抓取客户需求)实时监控处理进度,失败任务自动重试2.零代码的极简交互无需Python环境配置直接输入自然语言指令(如
- JAVA毕设项目-基于SSM框架的百色学院创新实践学分认定系统源码+设计文档
AICurator
毕业设计java课程设计开发语言
文末获取源码+数据库+文档感兴趣的可以先收藏,有毕设问题,项目以及论文撰写等问题都可以和博主沟通,尽最大努力帮助更多的人!百色学院创新实践学分认定系统设计与实现摘要本百色学院创新实践学分认定系统是针对目前实践学分认定的实际需求,从实际工作出发,对过去的实践学分认定系统存在的问题进行分析,结合计算机系统的结构、概念、模型、原理、方法,在计算机各种优势的情况下,采用目前最流行的B/S结构和java中流
- 基于单片机的室外休闲智能座椅设计(论文+源码)
云山工作室
单片机嵌入式硬件毕业设计毕设
1系统总体设计本课题为基于单片机的室外休闲智能座椅的设计,其可以实现温湿度检测,座椅加热,自动照明,背靠调节等工作。整个系统架构如图2.1所示其中包括了按键模块,温湿度检测模块,显示模块,加热模块,照明模块,按摩模块,背靠调节模块等器件设备。其中,显示模块采用LCD1602液晶显示当前的状态信息;温湿度检测,采用DHT11传感器实现,加热和照明功能,采用继电器间接控制加热棒和LED灯来实现;按摩则
- 自识别标记(self-identifying marker) -(1) 简介
计算机视觉life
计算机视觉自识别标记计算机视觉
一、什么是自识别标记(Self-identifyingmarker)?自识别标记在不同的论文中有不同称谓,比如self-identifyingmarker,self-identifyingmarkerpattern,fiducialmarker等,在此我们统称为自识别标记。自识别标记乍一看有点类似我们常见的二维码,其每个标记具有唯一性。和二维码不同的是,自识别标记在实际应用中通常由多个一起组合成规
- VoVNet(2019 CVPR)
刘若里
论文阅读人工智能计算机视觉学习笔记网络
论文标题AnEnergyandGPU-ComputationEfficientBackboneNetworkforReal-TimeObjectDetection论文作者YoungwanLee,Joong-wonHwang,SangrokLee,YuseokBae,JongyoulPark发表日期2019年04月22日GB引用>LeeYoungwan,HwangJoong-won,LeeSangr
- 基于OpenCV的Java人脸识别系统设计与实现
小呀白呀兔
javaspringboot
基于OpenCV的Java人脸识别系统设计与实现1.引言随着计算机视觉技术的发展,人脸识别在安全监控、身份验证等领域得到了广泛应用。本文将详细介绍如何使用OpenCV库和Java语言构建一个简单的人脸识别系统。该系统能够从图像中检测人脸,并通过深度学习模型提取特征进行比对,最终输出相似度评分及置信度等级。2.环境搭建为了确保项目顺利运行,请按照以下步骤配置开发环境:安装JDK:确保已安装JavaD
- 大白话聊聊“深度学习”和“大模型”
程序员鬼鬼
深度学习人工智能AI编程AIGCchatgptai
1950年图灵发表论文《计算机器与智能》(ComputingMachineryandIntelligence),提出了“机器智能”(MachineIntelligent)的概念,并且提出了著名的“图灵测试”的方法来判断机器是否有智能。1956年,达特茅斯会议,“人工智能”(ArtificialIntelligent)概念被首次提出,人工智能作为一个学科开始被研究。科学家梦想着未来可以用复杂物理结构
- 2024论文AIGC降重避雷指南:这些“坑”千万别踩!
LL06210721
AIGC人工智能
政策背景:“2024年知网/维普新增AIGC检测模块,高校严查AI生成内容。据公开数据,某985院校硕士论文初检AIGC率超标比例达35%。”常见误区分析:误区1:直接复制AI生成的口语化结论→被算法标记“非学术表达”;误区2:虚构参考文献→查重率飙升+学术诚信风险;误区3:忽略图表公式规范性→格式问题被导师驳回。合规建议:表达优化:使用专业工具替换AI生成的松散句式(例:将“总而言之”改为“综上
- 基于STM32的智能家居蓝牙系统(论文+源码)
云山工作室
stm32智能家居嵌入式硬件
1总体方案设计本次基于STM32的智能家居蓝牙系统,其系统总体架构如图2.1所示,采用STM32f103单片机作为控制器,通过DHT11传感器实现温湿度检测,MQ-2烟雾传感器实现烟雾检测,光敏电阻实现光照检测,同时将数据通过HC-05蓝牙模块上传到手机APP,用户可以通过手机APP实现对LED灯的开关控制,以及设定温度的报警阈值,如果温度太高会启动风扇进行降温,并将检测的参数通过OLED1286
- Python 爬虫实战:爬取学术论文数据
西攻城狮北
python爬虫实战案例
一、项目概述二、环境准备1.Python和PyCharm安装2.安装必要Python库三、爬虫实战1.分析目标网站2.编写爬虫代码(1)使用Requests和BeautifulSoup获取页面数据(2)使用Pandas存储数据(3)使用Scrapy框架构建高效爬虫3.爬取API数据四、数据处理与分析1.数据清洗2.数据可视化五、注意事项1.遵守法律和道德规范2.处理验证码3.应对反爬虫机制六、总结
- 图表解析技术:逆向提取图表数据,需要哪几步?
对于我们时代的所有“PPT工作者”来说,图表是一位熟悉的“老朋友”了。通过Office、编程语言库或是更丰富的生成工具,我们能够便捷地将数据绘制成美观、抓眼、适宜展示的图表,在各类汇报、讲演、宣传工作里起到比表格数字更直观的效果。然而,当我们产生了与之相反的需求:将各色报告或论文中的图表逆向转化为原始数据,用于数据处理分析,又应该怎么做呢?与绘制图表相比,解析它们的任务提出了更精密的技术要求。本期
- 【目标检测论文解读复现NO.38】基于改进YOLOv8模型的轻量化板栗果实识别方法
人工智能算法研究院
中文核心论文解读复现目标检测YOLO目标跟踪
前言此前出了目标改进算法专栏,但是对于应用于什么场景,需要什么改进方法对应与自己的应用场景有效果,并且多少改进点能发什么水平的文章,为解决大家的困惑,此系列文章旨在给大家解读最新目标检测算法论文,帮助大家解答疑惑。解读的系列文章,本人已进行创新点代码复现,有需要的朋友可关注私信我。本文仅对论文代码实现,如果原文章的作者觉得不方便,请联系删除,尊重每一位论文作者。一、摘要为实现自然环境下的板栗果实目
- YOLOv8改进主干RTMDet论文系列:高效涨点的单阶段目标检测器主干
IdfdFsharp
YOLO计算机视觉
近年来,目标检测技术在计算机视觉领域取得了显著的进展。为了提高目标检测器的性能和降低延时,研究人员不断提出新的方法和架构。本文介绍了一篇名为"YOLOv8改进主干RTMDet"的论文系列,该系列通过结合最新的RTMDet论文和采用CSPNeXt主干结构,实现了高性能、低延时的单阶段目标检测器主干。在本论文系列中,作者着重研究了目标检测器主干的改进方法。主干网络在目标检测中扮演着重要的角色,它负责提
- 学术论文数据爬虫:爬取学术论文信息,进行文献分析
Python爬虫项目
2025年爬虫实战项目爬虫开发语言phppython媒体
1.引言学术论文分析是一项对科研人员、学术研究机构以及相关领域的从业人员至关重要的任务。随着学术文献的日益增多,手动查阅和筛选文献已经变得不切实际,如何快速、准确地获取学术论文并进行分析,已经成为一个亟待解决的问题。借助爬虫技术,我们可以高效地收集学术文献数据,进行文献计量分析,揭示研究趋势,帮助学者们深入了解各学科领域的最新发展。本篇博客将展示如何使用Python编写学术论文数据爬虫,爬取来自多
- 量子位招聘 | DeepSeek帮我们改的招聘启事
量子位
关注前沿科技量子位未来同事,你好~这是一则招聘帖。如果你与我们志同道合,对AI大模型、具身智能、终端硬件、AI新媒体编辑感兴趣,我们正在招聘这些领域的原创作者。以下岗位均为全职,工作地点:北京中关村。岗位面向:社招、应届毕业生,所有岗位均可实习——表现出色均可转正加分项:乐于探索AI新工具,善用AI新工具;拥有解读论文的能力,能深入浅出讲解原理;有写代码能力;量子位长期读者。加入我们,你可以获得:
- 2万字长文,九篇论文读懂大语言模型的前世今生
人工智能
2万字长文,九篇论文读懂大语言模型的前世今生友情提示:这是一篇2W字长文,但我保证,它绝对值得一读!如果感兴趣的话,感谢关注,点赞转发在看收藏,五键四连,谢谢~更多LLM架构文章:LLM架构专栏近日热文:1.全网最全的神经网络数学原理(代码和公式)直观解释2.大模型进化史:从Transformer到DeepSeek-R1的AI变革之路3.2W8000字深度剖析25种RAG变体:全网最全~没有之一4
- 双盲机制(信念,欲望):模型上下文通常会包含所有信,双盲机制屏蔽:每个智能体分别进行独立的模型调用
ZhangJiQun&MXP
教学2021AIpython2024大模型以及算力人工智能androidpython自然语言处理pycharm
如何让人工智能生成的说服性对话更接近真实的日常交流目录如何让人工智能生成的说服性对话更接近真实的日常交流**一、核心创新点解析****1.双盲对话生成机制****2.因果心理理论指导****3.多智能体协作框架ToMMA****二、实验结论****三、论文贡献**怎么代码中实现Agent的双盲场景假设代码实现代码解释注意事项模型上下文通常会包含所有信,双盲机制屏蔽:每个智能体分别进行独立的模型调用
- 深度学习现状与未来发展趋势分析报告(深度学习还是主流吗?)
与光同尘 大道至简
深度学习人工智能
此博客分析深度学习当前的主流应用领域、其受关注度的变化趋势、可能的技术替代或补充方案、产业界和学术界的不同发展方向,以及影响其受关注度变化的核心因素。报告将包括结构化分析(背景、现状、挑战、未来趋势)、数据驱动(市场趋势、论文发表量等数据支持)以及行业案例分析,以展示某些行业如何逐步减少对深度学习的依赖。背景深度学习的概念与发展历程:深度学习(DeepLearning)是机器学习中的一类方法,源于
- Python项目-基于深度学习的校园人脸识别考勤系统
天天进步2015
Python项目实战python
引言随着人工智能技术的快速发展,深度学习在计算机视觉领域的应用日益广泛。人脸识别作为其中的一个重要分支,已经在安防、金融、教育等多个领域展现出巨大的应用价值。本文将详细介绍如何使用Python和深度学习技术构建一个校园人脸识别考勤系统,该系统能够自动识别学生身份并记录考勤信息,大大提高了考勤效率,减轻了教师的工作负担。系统概述功能特点实时人脸检测与识别:能够从摄像头视频流中实时检测并识别人脸自动考
- Search-o1:智体搜索增强的大型推理模型
三谷秋水
机器学习大模型人工智能人工智能深度学习机器学习
25年1月来自人大和清华的论文“Search-o1:AgenticSearch-EnhancedLargeReasoningModels”。大型推理模型(LRM)(例如OpenAI-o1)已通过大规模强化学习展示长步推理能力。然而,它们的扩展推理过程通常会受到知识不足的影响,从而导致频繁出现不确定性和潜在错误。为了解决这一限制,引入Search-o1,这是一个使用智体检索增强生成(RAG)机制和用
- Pytorch实现之LSRGAN,轻量化SRGAN超分辨率SAR
这张生成的图像能检测吗
优质GAN模型训练自己的数据集超分辨率重建人工智能图像处理计算机视觉深度学习pytorch机器学习
简介简介:在SRGAN的基础上设计了一个轻量化的SRGAN模型结构,通过DSConv+CA与残差结构的设计来减少参数量,同时利用SeLU激活函数构造。与多类SRGAN改进不同的是,很少使用BN层。论文题目:LightweightSuper-ResolutionGenerativeAdversarialNetworkforSARImages(SAR图像的轻量级超分辨率生成对抗网络)期刊:Remote
- 基于Springboot的毕业论文管理系统的设计与实现
2301_81127431
javajava
基于SpringBoot的毕业论文管理系统的设计与实现摘要:随着科技和互联网的飞速发展,无纸化办公方式已成为时代潮流,不仅绿色环保,而且能提高办公效率。目前,在很多高校,无纸化办公方式也特别普遍,但是,对于毕业论文的管理,却有很多高校仍处于人工管理的阶段,过程繁琐且效率低下,不利于教师对学生毕业论文管理做到整理方便、查找迅速。这种人工管理论文的方式已不能满足现代高校建设数字化校园的发展需要。针对目
- 【AI论文】DeepSolution:通过基于树的探索和双点思维促进复杂的工程解决方案设计
东临碣石82
人工智能
摘要:为复杂的工程挑战设计解决方案在人类生产活动中至关重要。然而,检索增强生成(RAG)领域之前的研究并没有充分解决与复杂工程解决方案设计相关的任务。为了填补这一空白,我们引入了一个新的基准,SolutionBench,来评估一个系统为具有多个复杂约束的工程问题生成完整和可行解决方案的能力。为了进一步推进复杂工程解决方案的设计,我们提出了一种新的系统SolutionRAG,该系统利用基于树的探索和
- 《YOLOv12魔术师专栏》专栏介绍 & 专栏目录
AI小怪兽
YOLOv811v12成长师YOLO深度学习人工智能目标检测计算机视觉
《YOLOv12魔术师专栏》将从以下各个方向进行创新(更新日期25.03.05):【原创自研模块】【多组合点优化】【注意力机制】【主干篇】【neck优化】【卷积魔改】【block&多尺度融合结合】【损失&IOU优化】【上下采样优化】【小目标性能提升】【前沿论文分享】【训练实战篇】订阅者可以申请发票,便于报销定期向订阅者提供源码工程+windows编译好的环境,配合博客使用《YOLOv12魔术师专栏
- Transformer架构简略:DeepSeek 的底层基石
windwant
人工智能人工智能transformer架构
2017年,一篇名为《AttentionisAllYouNeed》的论文横空出世,提出了Transformer架构,彻底改变了自然语言处理(NLP)领域的格局。它不仅在各种NLP任务上取得了突破性进展,更成为了当今人工智能领域最具影响力的架构之一。一、从RNN到Transformer:突破瓶颈,开创先河在Transformer出现之前,循环神经网络(RNN)及其变体(如LSTM、GRU)是处理序列
- 【图像去噪】论文复现:真实噪声转高斯噪声,提升高斯噪声训练的模型性能!Learning to Translate Noise的Pytorch源码复现,跑通流程,框架结构和损失函数详解!
十小大
pytorch人工智能python图像去噪图像处理深度学习计算机视觉
请先看【专栏介绍文章】:【图像去噪(ImageDenoising)】关于【图像去噪】专栏的相关说明,包含适配人群、专栏简介、专栏亮点、阅读方法、定价理由、品质承诺、关于更新、去噪概述、文章目录、资料汇总、问题汇总(更新中)完整代码和训练好的模型权重文件下载链接见本文底部,订阅专栏免费获取!本文亮点:跑通LearningtoTranslateNoise源码,包含基于BasicSR的训练和测试代码,得
- 曝罗永浩挖走小米前50号员工要做AIOS;谷歌呼吁美国政府不要拆分公司;Copilot+PC能本地运行DeepSeek|极客头条
极客日报
资讯
「极客头条」——技术人员的新闻圈!CSDN的读者朋友们好,「极客头条」来啦,快来看今天都有哪些值得我们技术人关注的重要新闻吧。整理|苏宓出品|CSDN(ID:CSDNnews)一分钟速览新闻点!AAAI2025杰出论文奖出炉,南大周志华团队获奖字节跳动以约3150亿美元估值启动新一轮股票回购计划消息称vivoOS部门新成立AI领域,大模型训练重心向端侧转移为“AIOS”招兵买马:消息称罗永浩挖来小
- Pytorch实现之基于相对平均生成对抗网络的人脸图像超分辨率
这张生成的图像能检测吗
优质GAN模型训练自己的数据集生成对抗网络人工智能神经网络计算机视觉深度学习pythonpytorch
简介简介:改进SRGAN,并使用相对平均生成对抗网络的人脸图像超分辨率训练自己的数据集论文题目:FaceImageSuper-resolutionBasedOnRelativeAverageGenerativeAdversarialNetworks(基于相对平均生成对抗网络的人脸图像超分辨率)会议:20212ndAsiaSymposiumonSignalProcessing(ASSP)摘要:人脸图
- rust的指针作为函数返回值是直接传递,还是先销毁后创建?
wudixiaotie
返回值
这是我自己想到的问题,结果去知呼提问,还没等别人回答, 我自己就想到方法实验了。。
fn main() {
let mut a = 34;
println!("a's addr:{:p}", &a);
let p = &mut a;
println!("p's addr:{:p}", &a
- java编程思想 -- 数据的初始化
百合不是茶
java数据的初始化
1.使用构造器确保数据初始化
/*
*在ReckInitDemo类中创建Reck的对象
*/
public class ReckInitDemo {
public static void main(String[] args) {
//创建Reck对象
new Reck();
}
}
- [航天与宇宙]为什么发射和回收航天器有档期
comsci
地球的大气层中有一个时空屏蔽层,这个层次会不定时的出现,如果该时空屏蔽层出现,那么将导致外层空间进入的任何物体被摧毁,而从地面发射到太空的飞船也将被摧毁...
所以,航天发射和飞船回收都需要等待这个时空屏蔽层消失之后,再进行
&
- linux下批量替换文件内容
商人shang
linux替换
1、网络上现成的资料
格式: sed -i "s/查找字段/替换字段/g" `grep 查找字段 -rl 路径`
linux sed 批量替换多个文件中的字符串
sed -i "s/oldstring/newstring/g" `grep oldstring -rl yourdir`
例如:替换/home下所有文件中的www.admi
- 网页在线天气预报
oloz
天气预报
网页在线调用天气预报
<%@ page language="java" contentType="text/html; charset=utf-8"
pageEncoding="utf-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transit
- SpringMVC和Struts2比较
杨白白
springMVC
1. 入口
spring mvc的入口是servlet,而struts2是filter(这里要指出,filter和servlet是不同的。以前认为filter是servlet的一种特殊),这样就导致了二者的机制不同,这里就牵涉到servlet和filter的区别了。
参见:http://blog.csdn.net/zs15932616453/article/details/8832343
2
- refuse copy, lazy girl!
小桔子
copy
妹妹坐船头啊啊啊啊!都打算一点点琢磨呢。文字编辑也写了基本功能了。。今天查资料,结果查到了人家写得完完整整的。我清楚的认识到:
1.那是我自己觉得写不出的高度
2.如果直接拿来用,很快就能解决问题
3.然后就是抄咩~~
4.肿么可以这样子,都不想写了今儿个,留着作参考吧!拒绝大抄特抄,慢慢一点点写!
- apache与php整合
aichenglong
php apache web
一 apache web服务器
1 apeche web服务器的安装
1)下载Apache web服务器
2)配置域名(如果需要使用要在DNS上注册)
3)测试安装访问http://localhost/验证是否安装成功
2 apache管理
1)service.msc进行图形化管理
2)命令管理,配
- Maven常用内置变量
AILIKES
maven
Built-in properties
${basedir} represents the directory containing pom.xml
${version} equivalent to ${project.version} (deprecated: ${pom.version})
Pom/Project properties
Al
- java的类和对象
百合不是茶
JAVA面向对象 类 对象
java中的类:
java是面向对象的语言,解决问题的核心就是将问题看成是一个类,使用类来解决
java使用 class 类名 来创建类 ,在Java中类名要求和构造方法,Java的文件名是一样的
创建一个A类:
class A{
}
java中的类:将某两个事物有联系的属性包装在一个类中,再通
- JS控制页面输入框为只读
bijian1013
JavaScript
在WEB应用开发当中,增、删除、改、查功能必不可少,为了减少以后维护的工作量,我们一般都只做一份页面,通过传入的参数控制其是新增、修改或者查看。而修改时需将待修改的信息从后台取到并显示出来,实际上就是查看的过程,唯一的区别是修改时,页面上所有的信息能修改,而查看页面上的信息不能修改。因此完全可以将其合并,但通过前端JS将查看页面的所有信息控制为只读,在信息量非常大时,就比较麻烦。
- AngularJS与服务器交互
bijian1013
JavaScriptAngularJS$http
对于AJAX应用(使用XMLHttpRequests)来说,向服务器发起请求的传统方式是:获取一个XMLHttpRequest对象的引用、发起请求、读取响应、检查状态码,最后处理服务端的响应。整个过程示例如下:
var xmlhttp = new XMLHttpRequest();
xmlhttp.onreadystatechange
- [Maven学习笔记八]Maven常用插件应用
bit1129
maven
常用插件及其用法位于:http://maven.apache.org/plugins/
1. Jetty server plugin
2. Dependency copy plugin
3. Surefire Test plugin
4. Uber jar plugin
1. Jetty Pl
- 【Hive六】Hive用户自定义函数(UDF)
bit1129
自定义函数
1. 什么是Hive UDF
Hive是基于Hadoop中的MapReduce,提供HQL查询的数据仓库。Hive是一个很开放的系统,很多内容都支持用户定制,包括:
文件格式:Text File,Sequence File
内存中的数据格式: Java Integer/String, Hadoop IntWritable/Text
用户提供的 map/reduce 脚本:不管什么
- 杀掉nginx进程后丢失nginx.pid,如何重新启动nginx
ronin47
nginx 重启 pid丢失
nginx进程被意外关闭,使用nginx -s reload重启时报如下错误:nginx: [error] open() “/var/run/nginx.pid” failed (2: No such file or directory)这是因为nginx进程被杀死后pid丢失了,下一次再开启nginx -s reload时无法启动解决办法:nginx -s reload 只是用来告诉运行中的ng
- UI设计中我们为什么需要设计动效
brotherlamp
UIui教程ui视频ui资料ui自学
随着国际大品牌苹果和谷歌的引领,最近越来越多的国内公司开始关注动效设计了,越来越多的团队已经意识到动效在产品用户体验中的重要性了,更多的UI设计师们也开始投身动效设计领域。
但是说到底,我们到底为什么需要动效设计?或者说我们到底需要什么样的动效?做动效设计也有段时间了,于是尝试用一些案例,从产品本身出发来说说我所思考的动效设计。
一、加强体验舒适度
嗯,就是让用户更加爽更加爽的用你的产品。
- Spring中JdbcDaoSupport的DataSource注入问题
bylijinnan
javaspring
参考以下两篇文章:
http://www.mkyong.com/spring/spring-jdbctemplate-jdbcdaosupport-examples/
http://stackoverflow.com/questions/4762229/spring-ldap-invoking-setter-methods-in-beans-configuration
Sprin
- 数据库连接池的工作原理
chicony
数据库连接池
随着信息技术的高速发展与广泛应用,数据库技术在信息技术领域中的位置越来越重要,尤其是网络应用和电子商务的迅速发展,都需要数据库技术支持动 态Web站点的运行,而传统的开发模式是:首先在主程序(如Servlet、Beans)中建立数据库连接;然后进行SQL操作,对数据库中的对象进行查 询、修改和删除等操作;最后断开数据库连接。使用这种开发模式,对
- java 关键字
CrazyMizzz
java
关键字是事先定义的,有特别意义的标识符,有时又叫保留字。对于保留字,用户只能按照系统规定的方式使用,不能自行定义。
Java中的关键字按功能主要可以分为以下几类:
(1)访问修饰符
public,private,protected
p
- Hive中的排序语法
daizj
排序hiveorder byDISTRIBUTE BYsort by
Hive中的排序语法 2014.06.22 ORDER BY
hive中的ORDER BY语句和关系数据库中的sql语法相似。他会对查询结果做全局排序,这意味着所有的数据会传送到一个Reduce任务上,这样会导致在大数量的情况下,花费大量时间。
与数据库中 ORDER BY 的区别在于在hive.mapred.mode = strict模式下,必须指定 limit 否则执行会报错。
- 单态设计模式
dcj3sjt126com
设计模式
单例模式(Singleton)用于为一个类生成一个唯一的对象。最常用的地方是数据库连接。 使用单例模式生成一个对象后,该对象可以被其它众多对象所使用。
<?phpclass Example{ // 保存类实例在此属性中 private static&
- svn locked
dcj3sjt126com
Lock
post-commit hook failed (exit code 1) with output:
svn: E155004: Working copy 'D:\xx\xxx' locked
svn: E200031: sqlite: attempt to write a readonly database
svn: E200031: sqlite: attempt to write a
- ARM寄存器学习
e200702084
数据结构C++cC#F#
无论是学习哪一种处理器,首先需要明确的就是这种处理器的寄存器以及工作模式。
ARM有37个寄存器,其中31个通用寄存器,6个状态寄存器。
1、不分组寄存器(R0-R7)
不分组也就是说说,在所有的处理器模式下指的都时同一物理寄存器。在异常中断造成处理器模式切换时,由于不同的处理器模式使用一个名字相同的物理寄存器,就是
- 常用编码资料
gengzg
编码
List<UserInfo> list=GetUserS.GetUserList(11);
String json=JSON.toJSONString(list);
HashMap<Object,Object> hs=new HashMap<Object, Object>();
for(int i=0;i<10;i++)
{
- 进程 vs. 线程
hongtoushizi
线程linux进程
我们介绍了多进程和多线程,这是实现多任务最常用的两种方式。现在,我们来讨论一下这两种方式的优缺点。
首先,要实现多任务,通常我们会设计Master-Worker模式,Master负责分配任务,Worker负责执行任务,因此,多任务环境下,通常是一个Master,多个Worker。
如果用多进程实现Master-Worker,主进程就是Master,其他进程就是Worker。
如果用多线程实现
- Linux定时Job:crontab -e 与 /etc/crontab 的区别
Josh_Persistence
linuxcrontab
一、linux中的crotab中的指定的时间只有5个部分:* * * * *
分别表示:分钟,小时,日,月,星期,具体说来:
第一段 代表分钟 0—59
第二段 代表小时 0—23
第三段 代表日期 1—31
第四段 代表月份 1—12
第五段 代表星期几,0代表星期日 0—6
如:
*/1 * * * * 每分钟执行一次。
*
- KMP算法详解
hm4123660
数据结构C++算法字符串KMP
字符串模式匹配我们相信大家都有遇过,然而我们也习惯用简单匹配法(即Brute-Force算法),其基本思路就是一个个逐一对比下去,这也是我们大家熟知的方法,然而这种算法的效率并不高,但利于理解。
假设主串s="ababcabcacbab",模式串为t="
- 枚举类型的单例模式
zhb8015
单例模式
E.编写一个包含单个元素的枚举类型[极推荐]。代码如下:
public enum MaYun {himself; //定义一个枚举的元素,就代表MaYun的一个实例private String anotherField;MaYun() {//MaYun诞生要做的事情//这个方法也可以去掉。将构造时候需要做的事情放在instance赋值的时候:/** himself = MaYun() {*
- Kafka+Storm+HDFS
ssydxa219
storm
cd /myhome/usr/stormbin/storm nimbus &bin/storm supervisor &bin/storm ui &Kafka+Storm+HDFS整合实践kafka_2.9.2-0.8.1.1.tgzapache-storm-0.9.2-incubating.tar.gzKafka安装配置我们使用3台机器搭建Kafk
- Java获取本地服务器的IP
中华好儿孙
javaWeb获取服务器ip地址
System.out.println("getRequestURL:"+request.getRequestURL());
System.out.println("getLocalAddr:"+request.getLocalAddr());
System.out.println("getLocalPort:&quo