ORBSLAM2学习笔记3(Tracking)

Tracking类主要需要搞懂四种跟踪模式:

  • 1.TrackWithMotionModel
  • 2.TrackReferenceKeyFrame
  • 3.TrackLocalMap
  • 4.Relocalization

Tracking.h

/**
* This file is part of ORB-SLAM2.
*
* Copyright (C) 2014-2016 Raúl Mur-Artal  (University of Zaragoza)
* For more information see 
*
* ORB-SLAM2 is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* ORB-SLAM2 is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with ORB-SLAM2. If not, see .
*/


#ifndef TRACKING_H
#define TRACKING_H

#include
#include

#include"Viewer.h"
#include"FrameDrawer.h"
#include"Map.h"
#include"LocalMapping.h"
#include"LoopClosing.h"
#include"Frame.h"
#include "ORBVocabulary.h"
#include"KeyFrameDatabase.h"
#include"ORBextractor.h"
#include "Initializer.h"
#include "MapDrawer.h"
#include "System.h"

#include 

namespace ORB_SLAM2
{

class Viewer;
class FrameDrawer;
class Map;
class LocalMapping;
class LoopClosing;
class System;

class Tracking
{  

public:
    Tracking(System* pSys, ORBVocabulary* pVoc, FrameDrawer* pFrameDrawer, MapDrawer* pMapDrawer, Map* pMap,
             KeyFrameDatabase* pKFDB, const string &strSettingPath, const int sensor);

    // Preprocess the input and call Track(). Extract features and performs stereo matching.
    cv::Mat GrabImageStereo(const cv::Mat &imRectLeft,const cv::Mat &imRectRight, const double &timestamp);
    cv::Mat GrabImageRGBD(const cv::Mat &imRGB,const cv::Mat &imD, const double &timestamp);
    cv::Mat GrabImageMonocular(const cv::Mat &im, const double &timestamp);

    void SetLocalMapper(LocalMapping* pLocalMapper);
    void SetLoopClosing(LoopClosing* pLoopClosing);
    void SetViewer(Viewer* pViewer);

    // Load new settings
    // The focal lenght should be similar or scale prediction will fail when projecting points
    // TODO: Modify MapPoint::PredictScale to take into account focal lenght
    void ChangeCalibration(const string &strSettingPath);

    // Use this function if you have deactivated local mapping and you only want to localize the camera.
    /**只根据已有的地图进行定位,不进行LocalMapping */
    void InformOnlyTracking(const bool &flag);


public:

    // Tracking states
    enum eTrackingState{
        SYSTEM_NOT_READY=-1,
        NO_IMAGES_YET=0,
        NOT_INITIALIZED=1,
        OK=2,
        LOST=3
    };

    eTrackingState mState;
    eTrackingState mLastProcessedState;

    // Input sensor
    int mSensor;

    // Current Frame
    Frame mCurrentFrame;
    cv::Mat mImGray;

    // Initialization Variables (Monocular)
    std::vector<int> mvIniLastMatches;
    /// a vector restore init matched key point id
    std::vector<int> mvIniMatches;
    std::vector<cv::Point2f> mvbPrevMatched;
    std::vector<cv::Point3f> mvIniP3D;
    Frame mInitialFrame;

    // Lists used to recover the full camera trajectory at the end of the execution.
    // Basically we store the reference keyframe for each frame and its relative transformation
    ///储存了每一帧的参考帧和其相对于参考帧的变化,是为了恢复整个相机的轨迹
    list<cv::Mat> mlRelativeFramePoses;
    list<KeyFrame*> mlpReferences;
    list<double> mlFrameTimes;
    list<bool> mlbLost;

    // True if local mapping is deactivated and we are performing only localization
    bool mbOnlyTracking;

    void Reset();

protected:

    // Main tracking function. It is independent of the input sensor.
    void Track();

    // Map initialization for stereo and RGB-D
    void StereoInitialization();

    // Map initialization for monocular
    void MonocularInitialization();
    void CreateInitialMapMonocular();

    void CheckReplacedInLastFrame();
    bool TrackReferenceKeyFrame();
    void UpdateLastFrame();
    bool TrackWithMotionModel();

    bool Relocalization();

    void UpdateLocalMap();
    void UpdateLocalPoints();
    void UpdateLocalKeyFrames();

    bool TrackLocalMap();
    void SearchLocalPoints();

    bool NeedNewKeyFrame();
    void CreateNewKeyFrame();

    // In case of performing only localization, this flag is true when there are no matches to
    // points in the map. Still tracking will continue if there are enough matches with temporal points.
    // In that case we are doing visual odometry. The system will try to do relocalization to recover
    // "zero-drift" localization to the map.
    bool mbVO;

    //Other Thread Pointers
    LocalMapping* mpLocalMapper;
    LoopClosing* mpLoopClosing;

    //ORB
    ORBextractor* mpORBextractorLeft, *mpORBextractorRight;
    ORBextractor* mpIniORBextractor;

    //BoW
    ORBVocabulary* mpORBVocabulary;
    KeyFrameDatabase* mpKeyFrameDB;

    // Initalization (only for monocular)
    Initializer* mpInitializer;

    //Local Map
    KeyFrame* mpReferenceKF;
    std::vector<KeyFrame*> mvpLocalKeyFrames;
    std::vector<MapPoint*> mvpLocalMapPoints;
    
    // System
    System* mpSystem;
    
    //Drawers
    Viewer* mpViewer;
    FrameDrawer* mpFrameDrawer;
    MapDrawer* mpMapDrawer;

    //Map
    Map* mpMap;

    //Calibration matrix
    cv::Mat mK;
    cv::Mat mDistCoef;
    float mbf;

    //New KeyFrame rules (according to fps)
    int mMinFrames;
    int mMaxFrames;

    // Threshold close/far points
    // Points seen as close by the stereo/RGBD sensor are considered reliable
    // and inserted from just one frame. Far points requiere a match in two keyframes.
    float mThDepth;

    // For RGB-D inputs only. For some datasets (e.g. TUM) the depthmap values are scaled.
    float mDepthMapFactor;

    //Current matches in frame
    int mnMatchesInliers;

    //Last Frame, KeyFrame and Relocalisation Info
    KeyFrame* mpLastKeyFrame;
    Frame mLastFrame;
    unsigned int mnLastKeyFrameId;
    unsigned int mnLastRelocFrameId;

    //Motion Model
    cv::Mat mVelocity;

    //Color order (true RGB, false BGR, ignored if grayscale)
    bool mbRGB;

    list<MapPoint*> mlpTemporalPoints;
};

} //namespace ORB_SLAM

#endif // TRACKING_H

Tracking.cpp

/**
* This file is part of ORB-SLAM2.
*
* Copyright (C) 2014-2016 Raúl Mur-Artal  (University of Zaragoza)
* For more information see 
*
* ORB-SLAM2 is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* ORB-SLAM2 is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with ORB-SLAM2. If not, see .
*/


#include "Tracking.h"

#include
#include

#include"ORBmatcher.h"
#include"FrameDrawer.h"
#include"Converter.h"
#include"Map.h"
#include"Initializer.h"

#include"Optimizer.h"
#include"PnPsolver.h"

#include

#include


using namespace std;

namespace ORB_SLAM2
{

/**
 * 1.加载相机的参数;
 * 2.创建ORBextractor
 */
Tracking::Tracking(System *pSys, ORBVocabulary* pVoc, FrameDrawer *pFrameDrawer, MapDrawer *pMapDrawer, Map *pMap, KeyFrameDatabase* pKFDB, const string &strSettingPath, const int sensor):
    mState(NO_IMAGES_YET), mSensor(sensor), mbOnlyTracking(false), mbVO(false), mpORBVocabulary(pVoc),
    mpKeyFrameDB(pKFDB), mpInitializer(static_cast<Initializer*>(NULL)), mpSystem(pSys), mpViewer(NULL),
    mpFrameDrawer(pFrameDrawer), mpMapDrawer(pMapDrawer), mpMap(pMap), mnLastRelocFrameId(0)
{
    // Load camera parameters from settings file

    cv::FileStorage fSettings(strSettingPath, cv::FileStorage::READ);
    float fx = fSettings["Camera.fx"];
    float fy = fSettings["Camera.fy"];
    float cx = fSettings["Camera.cx"];
    float cy = fSettings["Camera.cy"];

    cv::Mat K = cv::Mat::eye(3,3,CV_32F);
    K.at<float>(0,0) = fx;
    K.at<float>(1,1) = fy;
    K.at<float>(0,2) = cx;
    K.at<float>(1,2) = cy;
    K.copyTo(mK);

    cv::Mat DistCoef(4,1,CV_32F);
    DistCoef.at<float>(0) = fSettings["Camera.k1"];
    DistCoef.at<float>(1) = fSettings["Camera.k2"];
    DistCoef.at<float>(2) = fSettings["Camera.p1"];
    DistCoef.at<float>(3) = fSettings["Camera.p2"];
    const float k3 = fSettings["Camera.k3"];
    if(k3!=0)
    {
        DistCoef.resize(5);
        DistCoef.at<float>(4) = k3;
    }
    DistCoef.copyTo(mDistCoef);

    mbf = fSettings["Camera.bf"];

    float fps = fSettings["Camera.fps"];
    if(fps==0)
        fps=30;

    // Max/Min Frames to insert keyframes and to check relocalisation
    mMinFrames = 0;
    mMaxFrames = fps;

    cout << endl << "Camera Parameters: " << endl;
    cout << "- fx: " << fx << endl;
    cout << "- fy: " << fy << endl;
    cout << "- cx: " << cx << endl;
    cout << "- cy: " << cy << endl;
    cout << "- k1: " << DistCoef.at<float>(0) << endl;
    cout << "- k2: " << DistCoef.at<float>(1) << endl;
    if(DistCoef.rows==5)
        cout << "- k3: " << DistCoef.at<float>(4) << endl;
    cout << "- p1: " << DistCoef.at<float>(2) << endl;
    cout << "- p2: " << DistCoef.at<float>(3) << endl;
    cout << "- fps: " << fps << endl;


    int nRGB = fSettings["Camera.RGB"];
    mbRGB = nRGB;

    if(mbRGB)
        cout << "- color order: RGB (ignored if grayscale)" << endl;
    else
        cout << "- color order: BGR (ignored if grayscale)" << endl;

    // Load ORB parameters

    int nFeatures = fSettings["ORBextractor.nFeatures"];
    float fScaleFactor = fSettings["ORBextractor.scaleFactor"];
    int nLevels = fSettings["ORBextractor.nLevels"];
    int fIniThFAST = fSettings["ORBextractor.iniThFAST"];
    int fMinThFAST = fSettings["ORBextractor.minThFAST"];

    mpORBextractorLeft = new ORBextractor(nFeatures,fScaleFactor,nLevels,fIniThFAST,fMinThFAST);

    if(sensor==System::STEREO)
        mpORBextractorRight = new ORBextractor(nFeatures,fScaleFactor,nLevels,fIniThFAST,fMinThFAST);

    if(sensor==System::MONOCULAR)
        mpIniORBextractor = new ORBextractor(2*nFeatures,fScaleFactor,nLevels,fIniThFAST,fMinThFAST);

    cout << endl  << "ORB Extractor Parameters: " << endl;
    cout << "- Number of Features: " << nFeatures << endl;
    cout << "- Scale Levels: " << nLevels << endl;
    cout << "- Scale Factor: " << fScaleFactor << endl;
    cout << "- Initial Fast Threshold: " << fIniThFAST << endl;
    cout << "- Minimum Fast Threshold: " << fMinThFAST << endl;

    if(sensor==System::STEREO || sensor==System::RGBD)
    {
        mThDepth = mbf*(float)fSettings["ThDepth"]/fx;
        cout << endl << "Depth Threshold (Close/Far Points): " << mThDepth << endl;
    }

    if(sensor==System::RGBD)
    {
        mDepthMapFactor = fSettings["DepthMapFactor"];
        if(fabs(mDepthMapFactor)<1e-5)
            mDepthMapFactor=1;
        else
            mDepthMapFactor = 1.0f/mDepthMapFactor;
    }

}

void Tracking::SetLocalMapper(LocalMapping *pLocalMapper)
{
    mpLocalMapper=pLocalMapper;
}

void Tracking::SetLoopClosing(LoopClosing *pLoopClosing)
{
    mpLoopClosing=pLoopClosing;
}

void Tracking::SetViewer(Viewer *pViewer)
{
    mpViewer=pViewer;
}


cv::Mat Tracking::GrabImageStereo(const cv::Mat &imRectLeft, const cv::Mat &imRectRight, const double &timestamp)
{
    mImGray = imRectLeft;
    cv::Mat imGrayRight = imRectRight;

    if(mImGray.channels()==3)
    {
        if(mbRGB)
        {
            cvtColor(mImGray,mImGray,CV_RGB2GRAY);
            cvtColor(imGrayRight,imGrayRight,CV_RGB2GRAY);
        }
        else
        {
            cvtColor(mImGray,mImGray,CV_BGR2GRAY);
            cvtColor(imGrayRight,imGrayRight,CV_BGR2GRAY);
        }
    }
    else if(mImGray.channels()==4)
    {
        if(mbRGB)
        {
            cvtColor(mImGray,mImGray,CV_RGBA2GRAY);
            cvtColor(imGrayRight,imGrayRight,CV_RGBA2GRAY);
        }
        else
        {
            cvtColor(mImGray,mImGray,CV_BGRA2GRAY);
            cvtColor(imGrayRight,imGrayRight,CV_BGRA2GRAY);
        }
    }

    mCurrentFrame = Frame(mImGray,imGrayRight,timestamp,mpORBextractorLeft,mpORBextractorRight,mpORBVocabulary,mK,mDistCoef,mbf,mThDepth);

    Track();

    return mCurrentFrame.mTcw.clone();
}


cv::Mat Tracking::GrabImageRGBD(const cv::Mat &imRGB,const cv::Mat &imD, const double &timestamp)
{
    mImGray = imRGB;
    cv::Mat imDepth = imD;

    if(mImGray.channels()==3)
    {
        if(mbRGB)
            cvtColor(mImGray,mImGray,CV_RGB2GRAY);
        else
            cvtColor(mImGray,mImGray,CV_BGR2GRAY);
    }
    else if(mImGray.channels()==4)
    {
        if(mbRGB)
            cvtColor(mImGray,mImGray,CV_RGBA2GRAY);
        else
            cvtColor(mImGray,mImGray,CV_BGRA2GRAY);
    }

    if((fabs(mDepthMapFactor-1.0f)>1e-5) || imDepth.type()!=CV_32F)
        imDepth.convertTo(imDepth,CV_32F,mDepthMapFactor);

    mCurrentFrame = Frame(mImGray,imDepth,timestamp,mpORBextractorLeft,mpORBVocabulary,mK,mDistCoef,mbf,mThDepth);

    Track();

    return mCurrentFrame.mTcw.clone();
}

/**
 * 1.转换图像为单通道的灰度图;
 * 2.生成Frame类对象;
 * 3.调用Track函数进行特征点跟踪
 */
cv::Mat Tracking::GrabImageMonocular(const cv::Mat &im, const double &timestamp)
{
    mImGray = im;

    if(mImGray.channels()==3)
    {
        if(mbRGB)
            cvtColor(mImGray,mImGray,CV_RGB2GRAY);
        else
            cvtColor(mImGray,mImGray,CV_BGR2GRAY);
    }
    else if(mImGray.channels()==4)
    {
        if(mbRGB)
            cvtColor(mImGray,mImGray,CV_RGBA2GRAY);
        else
            cvtColor(mImGray,mImGray,CV_BGRA2GRAY);
    }

    if(mState==NOT_INITIALIZED || mState==NO_IMAGES_YET)
        mCurrentFrame = Frame(mImGray,timestamp,mpIniORBextractor,mpORBVocabulary,mK,mDistCoef,mbf,mThDepth);
    else
        mCurrentFrame = Frame(mImGray,timestamp,mpORBextractorLeft,mpORBVocabulary,mK,mDistCoef,mbf,mThDepth);

    Track();

    return mCurrentFrame.mTcw.clone();
}


/**
 * 进行帧跟踪
 * 几种跟踪模式:
 * 1.TrackWithMotionModel
 * 2.TrackReferenceKeyFrame
 * 3.TrackLocalMap
 * 4.Relocalization
 * 
 */
void Tracking::Track()
{
    if(mState==NO_IMAGES_YET)
    {
        mState = NOT_INITIALIZED;
    }

    mLastProcessedState=mState;

    // Get Map Mutex -> Map cannot be changed
    unique_lock<mutex> lock(mpMap->mMutexMapUpdate);

    ///初始化SLAM系统,单目初始化需要用到前面两帧
    if(mState==NOT_INITIALIZED)
    {
        if(mSensor==System::STEREO || mSensor==System::RGBD)
            StereoInitialization();
        else
            MonocularInitialization();

        mpFrameDrawer->Update(this);

        if(mState!=OK)
            return;
    }
    else ///初始化完成
    {
        // System is initialized. Track Frame.
        bool bOK;

        // Initial camera pose estimation using motion model or relocalization (if tracking is lost)
        ///非只跟踪模式,用匀速运动模型或者重定位模式(跟踪丢失)
        if(!mbOnlyTracking)
        {
            // Local Mapping is activated. This is the normal behaviour, unless
            // you explicitly activate the "only tracking" mode.
            ///局部建图激活,这是正常情况,除非使用仅跟踪模式
            if(mState==OK)
            {
                // Local Mapping might have changed some MapPoints tracked in last frame
                CheckReplacedInLastFrame();

                ///如果是静止的,或者当前帧的离上一次的重定位帧id小于2,就跟踪参考帧
                if(mVelocity.empty() || mCurrentFrame.mnId<mnLastRelocFrameId+2)
                {
                    bOK = TrackReferenceKeyFrame();
                }
                else///跟踪运动模型
                {
                    bOK = TrackWithMotionModel();
                    if(!bOK)
                        bOK = TrackReferenceKeyFrame();
                }
            }
            else
            {
                bOK = Relocalization();
            }
        }
        else ///只跟踪模式
        {
            // Localization Mode: Local Mapping is deactivated

            if(mState==LOST)
            {
                bOK = Relocalization();
            }
            else
            {
                if(!mbVO)
                {
                    // In last frame we tracked enough MapPoints in the map

                    if(!mVelocity.empty())
                    {
                        bOK = TrackWithMotionModel();
                    }
                    else
                    {
                        bOK = TrackReferenceKeyFrame();
                    }
                }
                else 
                {
                    // In last frame we tracked mainly "visual odometry" points.

                    // We compute two camera poses, one from motion model and one doing relocalization.
                    // If relocalization is sucessfull we choose that solution, otherwise we retain
                    // the "visual odometry" solution.

                    bool bOKMM = false;
                    bool bOKReloc = false;
                    vector<MapPoint*> vpMPsMM;
                    vector<bool> vbOutMM;
                    cv::Mat TcwMM;
                    if(!mVelocity.empty())
                    {
                        bOKMM = TrackWithMotionModel();
                        vpMPsMM = mCurrentFrame.mvpMapPoints;
                        vbOutMM = mCurrentFrame.mvbOutlier;
                        TcwMM = mCurrentFrame.mTcw.clone();
                    }
                    bOKReloc = Relocalization();

                    if(bOKMM && !bOKReloc)
                    {
                        mCurrentFrame.SetPose(TcwMM);
                        mCurrentFrame.mvpMapPoints = vpMPsMM;
                        mCurrentFrame.mvbOutlier = vbOutMM;

                        if(mbVO)
                        {
                            for(int i =0; i<mCurrentFrame.N; i++)
                            {
                                if(mCurrentFrame.mvpMapPoints[i] && !mCurrentFrame.mvbOutlier[i])
                                {
                                    mCurrentFrame.mvpMapPoints[i]->IncreaseFound();
                                }
                            }
                        }
                    }
                    else if(bOKReloc)
                    {
                        mbVO = false;
                    }

                    bOK = bOKReloc || bOKMM;
                }
            }
        }

        mCurrentFrame.mpReferenceKF = mpReferenceKF;

        // If we have an initial estimation of the camera pose and matching. Track the local map.
        ///如果你有初始的相机姿态的估计,那么跟踪局部地图
        if(!mbOnlyTracking)
        {
            if(bOK)
                bOK = TrackLocalMap();
        }
        else
        {
            // mbVO true means that there are few matches to MapPoints in the map. We cannot retrieve
            // a local map and therefore we do not perform TrackLocalMap(). Once the system relocalizes
            // the camera we will use the local map again.
            //mbVO为True的时候,意味着在地图中只有很少的匹配点,那么我们不能抽取出一个局部地图
            //因此不执行TrackLocalMap.一旦系统重定位相机,我们就使用再次使用局部地图
            if(bOK && !mbVO)
                bOK = TrackLocalMap();
        }

        if(bOK)
            mState = OK;
        else
            mState=LOST;

        // Update drawer
        mpFrameDrawer->Update(this);

        // If tracking were good, check if we insert a keyframe
        if(bOK)
        {
            // Update motion model
            if(!mLastFrame.mTcw.empty())
            {
                cv::Mat LastTwc = cv::Mat::eye(4,4,CV_32F);
                mLastFrame.GetRotationInverse().copyTo(LastTwc.rowRange(0,3).colRange(0,3));
                mLastFrame.GetCameraCenter().copyTo(LastTwc.rowRange(0,3).col(3));
                mVelocity = mCurrentFrame.mTcw*LastTwc;
            }
            else
                mVelocity = cv::Mat();

            mpMapDrawer->SetCurrentCameraPose(mCurrentFrame.mTcw);

            // Clean VO matches
            for(int i=0; i<mCurrentFrame.N; i++)
            {
                MapPoint* pMP = mCurrentFrame.mvpMapPoints[i];
                if(pMP)
                    if(pMP->Observations()<1)
                    {
                        mCurrentFrame.mvbOutlier[i] = false;
                        mCurrentFrame.mvpMapPoints[i]=static_cast<MapPoint*>(NULL);
                    }
            }

            // Delete temporal MapPoints
            for(list<MapPoint*>::iterator lit = mlpTemporalPoints.begin(), lend =  mlpTemporalPoints.end(); lit!=lend; lit++)
            {
                MapPoint* pMP = *lit;
                delete pMP;
            }
            mlpTemporalPoints.clear();

            // Check if we need to insert a new keyframe
            if(NeedNewKeyFrame())
                CreateNewKeyFrame();

            // We allow points with high innovation (considererd outliers by the Huber Function)
            // pass to the new keyframe, so that bundle adjustment will finally decide
            // if they are outliers or not. We don't want next frame to estimate its position
            // with those points so we discard them in the frame.
            for(int i=0; i<mCurrentFrame.N;i++)
            {
                if(mCurrentFrame.mvpMapPoints[i] && mCurrentFrame.mvbOutlier[i])
                    mCurrentFrame.mvpMapPoints[i]=static_cast<MapPoint*>(NULL);
            }
        }

        // Reset if the camera get lost soon after initialization
        if(mState==LOST)
        {
            if(mpMap->KeyFramesInMap()<=5)
            {
                cout << "Track lost soon after initialisation, reseting..." << endl;
                mpSystem->Reset();
                return;
            }
        }

        if(!mCurrentFrame.mpReferenceKF)
            mCurrentFrame.mpReferenceKF = mpReferenceKF;

        mLastFrame = Frame(mCurrentFrame);
    }

    // Store frame pose information to retrieve the complete camera trajectory afterwards.
    ///如果当前帧的相机Pose不为空,储存所有的Frame的位置信息,用来恢复整个相机的运动轨迹
    if(!mCurrentFrame.mTcw.empty())
    {
        ///Tcr = Tcw * (Trw)^-1
        cv::Mat Tcr = mCurrentFrame.mTcw*mCurrentFrame.mpReferenceKF->GetPoseInverse();
        mlRelativeFramePoses.push_back(Tcr);//记录当前帧相对于参考帧的位姿
        mlpReferences.push_back(mpReferenceKF);///记录当前帧的参考关键帧
        mlFrameTimes.push_back(mCurrentFrame.mTimeStamp);//记录当前帧的时间戳
        mlbLost.push_back(mState==LOST);
    }
    else///如果当前帧的相机Pose为空,即不能定位得到当前帧的相机Pose
    {
        // This can happen if tracking is lost
        mlRelativeFramePoses.push_back(mlRelativeFramePoses.back());
        mlpReferences.push_back(mlpReferences.back());
        mlFrameTimes.push_back(mlFrameTimes.back());
        mlbLost.push_back(mState==LOST);
    }

}


void Tracking::StereoInitialization()
{
    if(mCurrentFrame.N>500)
    {
        // Set Frame pose to the origin
        mCurrentFrame.SetPose(cv::Mat::eye(4,4,CV_32F));

        // Create KeyFrame
        KeyFrame* pKFini = new KeyFrame(mCurrentFrame,mpMap,mpKeyFrameDB);

        // Insert KeyFrame in the map
        mpMap->AddKeyFrame(pKFini);

        // Create MapPoints and asscoiate to KeyFrame
        for(int i=0; i<mCurrentFrame.N;i++)
        {
            float z = mCurrentFrame.mvDepth[i];
            if(z>0)
            {
                cv::Mat x3D = mCurrentFrame.UnprojectStereo(i);
                MapPoint* pNewMP = new MapPoint(x3D,pKFini,mpMap);
                pNewMP->AddObservation(pKFini,i);
                pKFini->AddMapPoint(pNewMP,i);
                pNewMP->ComputeDistinctiveDescriptors();
                pNewMP->UpdateNormalAndDepth();
                mpMap->AddMapPoint(pNewMP);

                mCurrentFrame.mvpMapPoints[i]=pNewMP;
            }
        }

        cout << "New map created with " << mpMap->MapPointsInMap() << " points" << endl;

        mpLocalMapper->InsertKeyFrame(pKFini);

        mLastFrame = Frame(mCurrentFrame);
        mnLastKeyFrameId=mCurrentFrame.mnId;
        mpLastKeyFrame = pKFini;

        mvpLocalKeyFrames.push_back(pKFini);
        mvpLocalMapPoints=mpMap->GetAllMapPoints();
        mpReferenceKF = pKFini;
        mCurrentFrame.mpReferenceKF = pKFini;

        mpMap->SetReferenceMapPoints(mvpLocalMapPoints);

        mpMap->mvpKeyFrameOrigins.push_back(pKFini);

        mpMapDrawer->SetCurrentCameraPose(mCurrentFrame.mTcw);

        mState=OK;
    }
}

/// init  monocular
void Tracking::MonocularInitialization()
{
    /// if not Initializer not created
    if(!mpInitializer)
    {
        // Set Reference Frame
        /// if current frame's key point more than 100
        if(mCurrentFrame.mvKeys.size()>100)
        {
            /// set init frame
            mInitialFrame = Frame(mCurrentFrame);
            /// set last frame
            mLastFrame = Frame(mCurrentFrame);
            /// set unditorted key frames to prevMatched
            mvbPrevMatched.resize(mCurrentFrame.mvKeysUn.size());
            for(size_t i=0; i<mCurrentFrame.mvKeysUn.size(); i++)
                mvbPrevMatched[i]=mCurrentFrame.mvKeysUn[i].pt;

            /// confirm Initializer not created
            if(mpInitializer)
                delete mpInitializer;

            /// new Initializer, [const Frame &ReferenceFrame, float sigma, int iterations]
            mpInitializer =  new Initializer(mCurrentFrame,1.0,200);

            fill(mvIniMatches.begin(),mvIniMatches.end(),-1);

            return;
        }
    }
    else /// if Initializer created
    {
        // Try to initialize
        /// if key points less than 100, initializer failed
        if((int)mCurrentFrame.mvKeys.size()<=100)
        {
            delete mpInitializer;
            mpInitializer = static_cast<Initializer*>(NULL);
            fill(mvIniMatches.begin(),mvIniMatches.end(),-1);
            return;
        }

        // Find correspondences
        ORBmatcher matcher(0.9,true);
        int nmatches = matcher.SearchForInitialization(mInitialFrame,mCurrentFrame,mvbPrevMatched,mvIniMatches,100);

        // Check if there are enough correspondences
        /// not enougth correspondences, failed
        if(nmatches<100)
        {
            delete mpInitializer;
            mpInitializer = static_cast<Initializer*>(NULL);
            return;
        }

        cv::Mat Rcw; // Current Camera Rotation
        cv::Mat tcw; // Current Camera Translation
        vector<bool> vbTriangulated; // Triangulated Correspondences (mvIniMatches)

        if(mpInitializer->Initialize(mCurrentFrame, mvIniMatches, Rcw, tcw, mvIniP3D, vbTriangulated))
        {
            for(size_t i=0, iend=mvIniMatches.size(); i<iend;i++)
            {
                if(mvIniMatches[i]>=0 && !vbTriangulated[i])
                {
                    mvIniMatches[i]=-1;
                    nmatches--;
                }
            }

            // Set Frame Poses
            mInitialFrame.SetPose(cv::Mat::eye(4,4,CV_32F));
            cv::Mat Tcw = cv::Mat::eye(4,4,CV_32F);
            Rcw.copyTo(Tcw.rowRange(0,3).colRange(0,3));
            tcw.copyTo(Tcw.rowRange(0,3).col(3));
            mCurrentFrame.SetPose(Tcw);

            CreateInitialMapMonocular();
        }
    }
}

void Tracking::CreateInitialMapMonocular()
{
    // Create KeyFrames 
    KeyFrame* pKFini = new KeyFrame(mInitialFrame,mpMap,mpKeyFrameDB);
    KeyFrame* pKFcur = new KeyFrame(mCurrentFrame,mpMap,mpKeyFrameDB);


    pKFini->ComputeBoW();
    pKFcur->ComputeBoW();

    // Insert KFs in the map
    mpMap->AddKeyFrame(pKFini);
    mpMap->AddKeyFrame(pKFcur);

    // Create MapPoints and asscoiate to keyframes
    /// loop all map point triangulated
    for(size_t i=0; i<mvIniMatches.size();i++)
    {
        /// no matched keypoints
        if(mvIniMatches[i]<0)
            continue;

        //Create MapPoint.
        cv::Mat worldPos(mvIniP3D[i]);

        /// new map point ref pKFcur
        MapPoint* pMP = new MapPoint(worldPos,pKFcur,mpMap);

        /// add map point to keyframe, so that keyframe now which map point it can see
        pKFini->AddMapPoint(pMP,i);
        pKFcur->AddMapPoint(pMP,mvIniMatches[i]);

        /// let map point know it can be seen by pKFini and pKFcur
        pMP->AddObservation(pKFini,i);
        pMP->AddObservation(pKFcur,mvIniMatches[i]);

        /// compute it's descriptor
        pMP->ComputeDistinctiveDescriptors();
        /// update map point's mean view angle from camera center to map point and depth
        pMP->UpdateNormalAndDepth();

        //Fill Current Frame structure
        mCurrentFrame.mvpMapPoints[mvIniMatches[i]] = pMP;
        mCurrentFrame.mvbOutlier[mvIniMatches[i]] = false;

        //Add to Map
        mpMap->AddMapPoint(pMP);
    }

    // Update Connections
    /// update covisibility graph, essential graph and spanning tree
    pKFini->UpdateConnections();
    pKFcur->UpdateConnections();

    // Bundle Adjustment
    cout << "New Map created with " << mpMap->MapPointsInMap() << " points" << endl;

    /// a global BA
    Optimizer::GlobalBundleAdjustemnt(mpMap,20);

    // Set median depth to 1
    float medianDepth = pKFini->ComputeSceneMedianDepth(2);
    float invMedianDepth = 1.0f/medianDepth;

    if(medianDepth<0 || pKFcur->TrackedMapPoints(1)<100)
    {
        cout << "Wrong initialization, reseting..." << endl;
        Reset();
        return;
    }

    // Scale initial baseline
    cv::Mat Tc2w = pKFcur->GetPose();
    Tc2w.col(3).rowRange(0,3) = Tc2w.col(3).rowRange(0,3)*invMedianDepth;
    pKFcur->SetPose(Tc2w);

    // Scale points
    vector<MapPoint*> vpAllMapPoints = pKFini->GetMapPointMatches();
    for(size_t iMP=0; iMP<vpAllMapPoints.size(); iMP++)
    {
        if(vpAllMapPoints[iMP])
        {
            MapPoint* pMP = vpAllMapPoints[iMP];
            pMP->SetWorldPos(pMP->GetWorldPos()*invMedianDepth);
        }
    }

    mpLocalMapper->InsertKeyFrame(pKFini);
    mpLocalMapper->InsertKeyFrame(pKFcur);

    mCurrentFrame.SetPose(pKFcur->GetPose());
    mnLastKeyFrameId=mCurrentFrame.mnId;
    mpLastKeyFrame = pKFcur;

    mvpLocalKeyFrames.push_back(pKFcur);
    mvpLocalKeyFrames.push_back(pKFini);
    mvpLocalMapPoints=mpMap->GetAllMapPoints();
    mpReferenceKF = pKFcur;
    mCurrentFrame.mpReferenceKF = pKFcur;

    mLastFrame = Frame(mCurrentFrame);

    mpMap->SetReferenceMapPoints(mvpLocalMapPoints);

    mpMapDrawer->SetCurrentCameraPose(pKFcur->GetPose());

    mpMap->mvpKeyFrameOrigins.push_back(pKFini);

    mState=OK;
}

///更新上一帧中被替换的地图点
void Tracking::CheckReplacedInLastFrame()
{
    for(int i =0; i<mLastFrame.N; i++)
    {
        ///上一帧的地图点
        MapPoint* pMP = mLastFrame.mvpMapPoints[i];

        if(pMP)
        {
            ///地图点的新的替换点
            MapPoint* pRep = pMP->GetReplaced();
            if(pRep)
            {
                ///指针指向新的替换点
                mLastFrame.mvpMapPoints[i] = pRep;
            }
        }
    }
}

///跟踪参考关键帧
bool Tracking::TrackReferenceKeyFrame()
{
    // Compute Bag of Words vector
    ///1.计算当前帧的BOw
    mCurrentFrame.ComputeBoW();

    // We perform first an ORB matching with the reference keyframe
    // If enough matches are found we setup a PnP solver
    ///2.和参考帧进行一个ORB匹配,利用BOW进行加速匹配
    ORBmatcher matcher(0.7,true);
    vector<MapPoint*> vpMapPointMatches;

    int nmatches = matcher.SearchByBoW(mpReferenceKF,mCurrentFrame,vpMapPointMatches);

    if(nmatches<15)
        return false;

    mCurrentFrame.mvpMapPoints = vpMapPointMatches;
    ///将上一帧的Pose作为当前帧的初始值,这样在优化的时候可以收敛的更快
    mCurrentFrame.SetPose(mLastFrame.mTcw);

    ///3.优化当前帧的位姿
    Optimizer::PoseOptimization(&mCurrentFrame);

    // Discard outliers
    ///4.删除在上一步优化中被设置为outlier的3D点
    int nmatchesMap = 0;
    for(int i =0; i<mCurrentFrame.N; i++)
    {
        if(mCurrentFrame.mvpMapPoints[i])
        {
            if(mCurrentFrame.mvbOutlier[i])
            {
                MapPoint* pMP = mCurrentFrame.mvpMapPoints[i];

                mCurrentFrame.mvpMapPoints[i]=static_cast<MapPoint*>(NULL);
                mCurrentFrame.mvbOutlier[i]=false;
                pMP->mbTrackInView = false;
                pMP->mnLastFrameSeen = mCurrentFrame.mnId;
                nmatches--;
            }
            else if(mCurrentFrame.mvpMapPoints[i]->Observations()>0)
                nmatchesMap++;
        }
    }

    return nmatchesMap>=10;
}


/**
 * 更新上一帧的Pose,
 * 给上一帧创建新的3D MapPoint,并且添加100个到 mlpTemporalPoints中.
 *  */
void Tracking::UpdateLastFrame()
{
    //取出上一帧和上一帧相对于参考帧的位姿
    // Update pose according to reference keyframe
    KeyFrame* pRef = mLastFrame.mpReferenceKF;
    /// last frame's pose relative to reference frame
    cv::Mat Tlr = mlRelativeFramePoses.back();

    ///得到上一帧在世界坐标系的Pose
    mLastFrame.SetPose(Tlr*pRef->GetPose());

    if(mnLastKeyFrameId==mLastFrame.mnId || mSensor==System::MONOCULAR || !mbOnlyTracking)
        return;

    // Create "visual odometry" MapPoints
    // We sort points according to their measured depth by the stereo/RGB-D sensor
    vector<pair<float,int> > vDepthIdx;
    vDepthIdx.reserve(mLastFrame.N);
    for(int i=0; i<mLastFrame.N;i++)
    {
        float z = mLastFrame.mvDepth[i];
        if(z>0)
        {
            vDepthIdx.push_back(make_pair(z,i));
        }
    }

    if(vDepthIdx.empty())
        return;

    ///根据特征点的深度从小到大排列
    sort(vDepthIdx.begin(),vDepthIdx.end());

    // We insert all close points (depth
    // If less than 100 close points, we insert the 100 closest ones.
    ///插入所有的深度小于mThDepth的MapPoint到mlpTemporalPoints
    ///如果小于100个,那么插入100个最近的点
    int nPoints = 0;
    for(size_t j=0; j<vDepthIdx.size();j++)
    {
        int i = vDepthIdx[j].second;

        bool bCreateNew = false;

        MapPoint* pMP = mLastFrame.mvpMapPoints[i];
        if(!pMP)
            bCreateNew = true;
        else if(pMP->Observations()<1)
        {
            bCreateNew = true;
        }

        ///创建新的3D地图点
        if(bCreateNew)
        {
            cv::Mat x3D = mLastFrame.UnprojectStereo(i);
            MapPoint* pNewMP = new MapPoint(x3D,mpMap,&mLastFrame,i);

            mLastFrame.mvpMapPoints[i]=pNewMP;

            mlpTemporalPoints.push_back(pNewMP);
            nPoints++;
        }
        else
        {
            nPoints++;
        }

        if(vDepthIdx[j].first>mThDepth && nPoints>100)
            break;
    }//for
}

/// track current frame with constance velocity motion model
///匀速运动模型进行跟踪
///主要思想是将上一帧的MapPoint投影到当前帧,在当前帧中找到和上一帧的MapPoint最相近的匹配点
bool Tracking::TrackWithMotionModel()
{
    ORBmatcher matcher(0.9,true);

    // Update last frame pose according to its reference keyframe
    // Create "visual odometry" points if in Localization Mode
    ///根据上一帧的参考帧,更新上一帧的位置姿态,然后创建新的地图点
    UpdateLastFrame();

    /// take velocity between last two frame to give current frame's a init pose
    ///根据上一帧的位置初始化当前帧的位姿
    mCurrentFrame.SetPose(mVelocity*mLastFrame.mTcw);

    ///当前帧的地图点设置为null
    fill(mCurrentFrame.mvpMapPoints.begin(),mCurrentFrame.mvpMapPoints.end(),static_cast<MapPoint*>(NULL));

    // Project points seen in previous frame
    int th;
    if(mSensor!=System::STEREO)
        th=15;
    else
        th=7;
    ///将上一帧的MapPoint投影到当前帧,在当前帧中找到和上一帧的MapPoint最相近的匹配点,并返回匹配特征点对数
    int nmatches = matcher.SearchByProjection(mCurrentFrame,mLastFrame,th,mSensor==System::MONOCULAR);

    // If few matches, uses a wider window search
    if(nmatches<20)
    {
        fill(mCurrentFrame.mvpMapPoints.begin(),mCurrentFrame.mvpMapPoints.end(),static_cast<MapPoint*>(NULL));
        nmatches = matcher.SearchByProjection(mCurrentFrame,mLastFrame,2*th,mSensor==System::MONOCULAR);
    }

    if(nmatches<20)
        return false;

    // Optimize frame pose with all matches
    Optimizer::PoseOptimization(&mCurrentFrame);

    // Discard outliers
    int nmatchesMap = 0;
    for(int i =0; i<mCurrentFrame.N; i++)
    {
        if(mCurrentFrame.mvpMapPoints[i])
        {
            if(mCurrentFrame.mvbOutlier[i])
            {
                MapPoint* pMP = mCurrentFrame.mvpMapPoints[i];

                mCurrentFrame.mvpMapPoints[i]=static_cast<MapPoint*>(NULL);
                mCurrentFrame.mvbOutlier[i]=false;
                pMP->mbTrackInView = false;
                pMP->mnLastFrameSeen = mCurrentFrame.mnId;
                nmatches--;
            }
            else if(mCurrentFrame.mvpMapPoints[i]->Observations()>0)
                nmatchesMap++;
        }
    }    

    if(mbOnlyTracking)
    {
        //在只跟踪模式下如果匹配的地图点的数目小于10个,那么设置mbVO为true
        mbVO = nmatchesMap<10;
        return nmatches>20;
    }

    return nmatchesMap>=10;
}

/**
 * 跟踪局部地图
 * 1.更新局部地图;
 * 2.在局部地图中给当前帧搜索匹配MapPoint;
 * 3.优化当前帧的Pose;
 * 4.更新MapPoint的统计数据
 */
bool Tracking::TrackLocalMap()
{
    // We have an estimation of the camera pose and some map points tracked in the frame.
    // We retrieve the local map and try to find matches to points in the local map.
    //我们估计除了相机的位姿态,并且并且有些地图点在图像中,
    //更细局部地图
    UpdateLocalMap();

    //在局部地图中给当前帧搜索匹配MapPoint
    SearchLocalPoints();

    // Optimize Pose
    Optimizer::PoseOptimization(&mCurrentFrame);
    mnMatchesInliers = 0;

    // Update MapPoints Statistics
    //更新MapPoint的统计数据
    for(int i=0; i<mCurrentFrame.N; i++)
    {
        if(mCurrentFrame.mvpMapPoints[i])
        {
            if(!mCurrentFrame.mvbOutlier[i])
            {
                mCurrentFrame.mvpMapPoints[i]->IncreaseFound();
                if(!mbOnlyTracking)
                {
                    if(mCurrentFrame.mvpMapPoints[i]->Observations()>0)
                        mnMatchesInliers++;
                }
                else
                    mnMatchesInliers++;
            }
            else if(mSensor==System::STEREO)
                mCurrentFrame.mvpMapPoints[i] = static_cast<MapPoint*>(NULL);

        }
    }

    // Decide if the tracking was succesful
    // More restrictive if there was a relocalization recently
    //如果重定位不久,但是匹配的inlier很少,那么跟踪失败
    if(mCurrentFrame.mnId<mnLastRelocFrameId+mMaxFrames && mnMatchesInliers<50)
        return false;

    if(mnMatchesInliers<30)
        return false;
    else
        return true;
}

/**
 * 是否需要插入关键帧
 * 插入关键帧的条件
 * 1.不是只跟踪模式;
 * 2.localMapper不在工作;
 * 3.刚进行完重定位;
 * 4.离上一个关键帧已经有MaxFrames个普通帧了;
 * 5.离上一个关键帧已经有mMinFrames个普通帧了,并且局部地图可以接受关键帧;
 * 6.mnMatchesInliers点很少,跟踪很弱了;
 * 7.跟踪点很少了;
 * 8.局部地图中的关键帧的数目少于3个
 * 9.等等
 */
bool Tracking::NeedNewKeyFrame()
{
    if(mbOnlyTracking)
        return false;

    // If Local Mapping is freezed by a Loop Closure do not insert keyframes
    if(mpLocalMapper->isStopped() || mpLocalMapper->stopRequested())
        return false;

    const int nKFs = mpMap->KeyFramesInMap();

    // Do not insert keyframes if not enough frames have passed from last relocalisation
    if(mCurrentFrame.mnId<mnLastRelocFrameId+mMaxFrames && nKFs>mMaxFrames)
        return false;

    // Tracked MapPoints in the reference keyframe
    //统计在参考帧中被追踪的地图点的数目
    int nMinObs = 3;
    if(nKFs<=2)
        nMinObs=2;
    int nRefMatches = mpReferenceKF->TrackedMapPoints(nMinObs);

    // Local Mapping accept keyframes?
    bool bLocalMappingIdle = mpLocalMapper->AcceptKeyFrames();

    // Check how many "close" points are being tracked and how many could be potentially created.
    int nNonTrackedClose = 0;
    int nTrackedClose= 0;
    if(mSensor!=System::MONOCULAR)
    {
        for(int i =0; i<mCurrentFrame.N; i++)
        {
            if(mCurrentFrame.mvDepth[i]>0 && mCurrentFrame.mvDepth[i]<mThDepth)
            {
                if(mCurrentFrame.mvpMapPoints[i] && !mCurrentFrame.mvbOutlier[i])
                    nTrackedClose++;
                else
                    nNonTrackedClose++;
            }
        }
    }

    bool bNeedToInsertClose = (nTrackedClose<100) && (nNonTrackedClose>70);

    // Thresholds
    float thRefRatio = 0.75f;
    if(nKFs<2)
        thRefRatio = 0.4f;

    if(mSensor==System::MONOCULAR)
        thRefRatio = 0.9f;

    // Condition 1a: More than "MaxFrames" have passed from last keyframe insertion
    const bool c1a = mCurrentFrame.mnId>=mnLastKeyFrameId+mMaxFrames;
    // Condition 1b: More than "MinFrames" have passed and Local Mapping is idle
    const bool c1b = (mCurrentFrame.mnId>=mnLastKeyFrameId+mMinFrames && bLocalMappingIdle);
    //Condition 1c: tracking is weak
    const bool c1c =  mSensor!=System::MONOCULAR && (mnMatchesInliers<nRefMatches*0.25 || bNeedToInsertClose) ;
    // Condition 2: Few tracked points compared to reference keyframe. Lots of visual odometry compared to map matches.
    const bool c2 = ((mnMatchesInliers<nRefMatches*thRefRatio|| bNeedToInsertClose) && mnMatchesInliers>15);

    if((c1a||c1b||c1c)&&c2)
    {
        // If the mapping accepts keyframes, insert keyframe.
        // Otherwise send a signal to interrupt BA
        //如果局部地图不能接受关键帧,那么直接打断BA
        if(bLocalMappingIdle)
        {
            return true;
        }
        else
        {
            mpLocalMapper->InterruptBA();
            if(mSensor!=System::MONOCULAR)
            {
                //局部地图中的关键帧的数目少于3个
                if(mpLocalMapper->KeyframesInQueue()<3)
                    return true;
                else
                    return false;
            }
            else
                return false;
        }
    }
    else
        return false;
}

/**
 * 创建新的关键帧,并插入LocalMapper
 */
void Tracking::CreateNewKeyFrame()
{
    //1.Tracking线程添加关键帧时,必须保证LocaMapping不能被终止,则mbNotStop需要为真
    if(!mpLocalMapper->SetNotStop(true))
        return;

    //2.创建新的关键帧
    KeyFrame* pKF = new KeyFrame(mCurrentFrame,mpMap,mpKeyFrameDB);

    //3.更新参考帧为新的关键帧
    mpReferenceKF = pKF;
    mCurrentFrame.mpReferenceKF = pKF;

    if(mSensor!=System::MONOCULAR)
    {
        mCurrentFrame.UpdatePoseMatrices();

        // We sort points by the measured depth by the stereo/RGBD sensor.
        // We create all those MapPoints whose depth < mThDepth.
        // If there are less than 100 close points we create the 100 closest.
        vector<pair<float,int> > vDepthIdx;
        vDepthIdx.reserve(mCurrentFrame.N);
        for(int i=0; i<mCurrentFrame.N; i++)
        {
            float z = mCurrentFrame.mvDepth[i];
            if(z>0)
            {
                vDepthIdx.push_back(make_pair(z,i));
            }
        }

        if(!vDepthIdx.empty())
        {
            sort(vDepthIdx.begin(),vDepthIdx.end());

            int nPoints = 0;
            for(size_t j=0; j<vDepthIdx.size();j++)
            {
                int i = vDepthIdx[j].second;

                bool bCreateNew = false;

                MapPoint* pMP = mCurrentFrame.mvpMapPoints[i];
                if(!pMP)
                    bCreateNew = true;
                else if(pMP->Observations()<1)
                {
                    bCreateNew = true;
                    mCurrentFrame.mvpMapPoints[i] = static_cast<MapPoint*>(NULL);
                }

                if(bCreateNew)
                {
                    cv::Mat x3D = mCurrentFrame.UnprojectStereo(i);
                    MapPoint* pNewMP = new MapPoint(x3D,pKF,mpMap);
                    pNewMP->AddObservation(pKF,i);
                    pKF->AddMapPoint(pNewMP,i);
                    pNewMP->ComputeDistinctiveDescriptors();
                    pNewMP->UpdateNormalAndDepth();
                    mpMap->AddMapPoint(pNewMP);

                    mCurrentFrame.mvpMapPoints[i]=pNewMP;
                    nPoints++;
                }
                else
                {
                    nPoints++;
                }

                if(vDepthIdx[j].first>mThDepth && nPoints>100)
                    break;
            }
        }
    }

    //4.插入关键帧
    mpLocalMapper->InsertKeyFrame(pKF);

    //5.设置localMapper不停止
    mpLocalMapper->SetNotStop(false);

    //6.更新上一个关键帧
    mnLastKeyFrameId = mCurrentFrame.mnId;
    mpLastKeyFrame = pKF;
}

/// search correspondence between curren frame's keypoints and local map points
///在局部地图点中寻找当前帧的特征点对应的地图点
void Tracking::SearchLocalPoints()
{
    // Do not search map points already matched
    /// cause some map point has been do matching in TrackWithMotionModel, TrackReferenceKeyFrame and Relocalization function
    /// mark current frame's map point's not to matched
    for(vector<MapPoint*>::iterator vit=mCurrentFrame.mvpMapPoints.begin(), vend=mCurrentFrame.mvpMapPoints.end(); vit!=vend; vit++)
    {
        MapPoint* pMP = *vit;
        if(pMP)
        {
            if(pMP->isBad())
            {
                *vit = static_cast<MapPoint*>(NULL);
            }
            else
            {
                /// increase number by one that see this map point
                pMP->IncreaseVisible();
                /// update last see the map point to current frame id
                pMP->mnLastFrameSeen = mCurrentFrame.mnId;
                /// mark this map point not to do matching, cause have been matched
                pMP->mbTrackInView = false;
            }
        }
    }

    int nToMatch=0;

    // Project points in frame and check its visibility
    /// handle all local map points 
    ///将局部地图的MapPoint投影到当前帧,并检测是否在当前帧视野内
    for(vector<MapPoint*>::iterator vit=mvpLocalMapPoints.begin(), vend=mvpLocalMapPoints.end(); vit!=vend; vit++)
    {
        MapPoint* pMP = *vit;
        if(pMP->mnLastFrameSeen == mCurrentFrame.mnId)
            continue;
        if(pMP->isBad())
            continue;
        // Project (this fills MapPoint variables for matching)
        /// if current frame can see this map point
        if(mCurrentFrame.isInFrustum(pMP,0.5))
        {
            pMP->IncreaseVisible();
            nToMatch++;
        }
    }

    if(nToMatch>0)
    {
        ORBmatcher matcher(0.8);
        int th = 1;
        if(mSensor==System::RGBD)
            th=3;
        // If the camera has been relocalised recently, perform a coarser search
        if(mCurrentFrame.mnId<mnLastRelocFrameId+2)
            th=5;
        /// match between current frame and local map point
        ///在局部地图点中寻找当前帧的特征点对应的地图点
        matcher.SearchByProjection(mCurrentFrame,mvpLocalMapPoints,th);
    }
}

///更新局部地图,更新局部关键帧和地图点
void Tracking::UpdateLocalMap()
{
    // This is for visualization
    mpMap->SetReferenceMapPoints(mvpLocalMapPoints);

    // Update
    UpdateLocalKeyFrames();
    UpdateLocalPoints();
}

/***
 * 更新局部地图点
 * 将关键帧的地图点添加到mvpLocalMapPoints
 */
void Tracking::UpdateLocalPoints()
{
    mvpLocalMapPoints.clear();
    //遍历所有的局部关键帧
    for(vector<KeyFrame*>::const_iterator itKF=mvpLocalKeyFrames.begin(), itEndKF=mvpLocalKeyFrames.end(); itKF!=itEndKF; itKF++)
    {
        //获取关键帧的匹配地图点
        KeyFrame* pKF = *itKF;
        const vector<MapPoint*> vpMPs = pKF->GetMapPointMatches();
        //遍历地图点,将MapPoint添加到mvpLocalMapPoints
        for(vector<MapPoint*>::const_iterator itMP=vpMPs.begin(), itEndMP=vpMPs.end(); itMP!=itEndMP; itMP++)
        {
            MapPoint* pMP = *itMP;
            if(!pMP)
                continue;
            //避免重复添加
            if(pMP->mnTrackReferenceForFrame==mCurrentFrame.mnId)
                continue;
            if(!pMP->isBad())
            {
                mvpLocalMapPoints.push_back(pMP);
                pMP->mnTrackReferenceForFrame=mCurrentFrame.mnId;
            }
        }
    }
}

/**
 * 更新局部地图中的关键帧
 * 1.根据当前帧的地图点,找到更多的共视程度高的关键帧作为局部地图的关键帧,
 * 
 */
void Tracking::UpdateLocalKeyFrames()
{
    // Each map point vote for the keyframes in which it has been observed
    ///<当前帧的共视帧,共视帧的共视地图点的数目>
    map<KeyFrame*,int> keyframeCounter;
    ///遍历地图点
    for(int i=0; i<mCurrentFrame.N; i++)
    {
        if(mCurrentFrame.mvpMapPoints[i])
        {
            ///得到地图点
            MapPoint* pMP = mCurrentFrame.mvpMapPoints[i];
            if(!pMP->isBad())
            {
                ///得到地图点的观测帧,即当前帧的共视帧
                const map<KeyFrame*,size_t> observations = pMP->GetObservations();
                ///遍历共视帧,然后统计和当前共视帧共视的地图点数目
                for(map<KeyFrame*,size_t>::const_iterator it=observations.begin(), itend=observations.end(); it!=itend; it++)
                    keyframeCounter[it->first]++;
            }
            else
            {
                mCurrentFrame.mvpMapPoints[i]=NULL;
            }
        }
    }

    if(keyframeCounter.empty())
        return;

    int max=0;
    KeyFrame* pKFmax= static_cast<KeyFrame*>(NULL);

    mvpLocalKeyFrames.clear();
    mvpLocalKeyFrames.reserve(3*keyframeCounter.size());

    // All keyframes that observe a map point are included in the local map. Also check which keyframe shares most points
    ///遍历所有的共视帧,找到共视程度最高的共视帧
    for(map<KeyFrame*,int>::const_iterator it=keyframeCounter.begin(), itEnd=keyframeCounter.end(); it!=itEnd; it++)
    {
        KeyFrame* pKF = it->first;

        if(pKF->isBad())
            continue;

        if(it->second>max)
        {
            max=it->second;
            pKFmax=pKF;
        }

        ///将共视帧放入mvpLocalKeyFrames
        mvpLocalKeyFrames.push_back(it->first);
        ///将当前帧设置为pKF的跟踪参考帧,就是说局部地图中所有的关键帧的跟踪参考帧都是当前帧
        pKF->mnTrackReferenceForFrame = mCurrentFrame.mnId;
    }


    // Include also some not-already-included keyframes that are neighbors to already-included keyframes
    ///遍历局部地图关键帧,增加一些没有添加到局部地图里面的关键帧,但是这些关键帧是已经添加到局部地图关键帧的邻近帧
    for(vector<KeyFrame*>::const_iterator itKF=mvpLocalKeyFrames.begin(), itEndKF=mvpLocalKeyFrames.end(); itKF!=itEndKF; itKF++)
    {
        // Limit the number of keyframes
        //限制局部地图的大小为80,这个是一个缺点,ORBSLAM中有很多这种hard_code的数字
        if(mvpLocalKeyFrames.size()>80)
            break;

        //1.取出关键帧
        KeyFrame* pKF = *itKF;
        //2.在共视图中取出10个和其共视程度最高的共视帧
        const vector<KeyFrame*> vNeighs = pKF->GetBestCovisibilityKeyFrames(10);
        //3.遍历所有的共视帧,将不在局部地图中的帧添加到局部地图中
        for(vector<KeyFrame*>::const_iterator itNeighKF=vNeighs.begin(), itEndNeighKF=vNeighs.end(); itNeighKF!=itEndNeighKF; itNeighKF++)
        {
            KeyFrame* pNeighKF = *itNeighKF;
            if(!pNeighKF->isBad())
            {
                //这就是上面设置参考帧为当前帧的用处,排除已经在局部地图中的关键帧
                if(pNeighKF->mnTrackReferenceForFrame!=mCurrentFrame.mnId)
                {
                    mvpLocalKeyFrames.push_back(pNeighKF);
                    pNeighKF->mnTrackReferenceForFrame=mCurrentFrame.mnId;
                    break;
                }
            }
        }
        ///4.遍历其子关键帧,将不在局部地图中的所有子关键帧添加到局部地图中
        const set<KeyFrame*> spChilds = pKF->GetChilds();
        for(set<KeyFrame*>::const_iterator sit=spChilds.begin(), send=spChilds.end(); sit!=send; sit++)
        {
            KeyFrame* pChildKF = *sit;
            if(!pChildKF->isBad())
            {
                if(pChildKF->mnTrackReferenceForFrame!=mCurrentFrame.mnId)
                {
                    mvpLocalKeyFrames.push_back(pChildKF);
                    pChildKF->mnTrackReferenceForFrame=mCurrentFrame.mnId;
                    break;
                }
            }
        }
        ///5.将父关键帧添加到局部地图中
        KeyFrame* pParent = pKF->GetParent();
        if(pParent)
        {
            if(pParent->mnTrackReferenceForFrame!=mCurrentFrame.mnId)
            {
                mvpLocalKeyFrames.push_back(pParent);
                pParent->mnTrackReferenceForFrame=mCurrentFrame.mnId;
                break;
            }
        }

    }

    ///将共视程度最高的关键帧作为参考关键帧
    if(pKFmax)
    {
        mpReferenceKF = pKFmax;
        mCurrentFrame.mpReferenceKF = mpReferenceKF;
    }
}

/**
 * 重定位:
 * 主要通过首先在关键帧数据库中选择候选帧,然后和候选帧进行PnP迭代,然后进行非线性优化,最后得到
 * 有足够inlier MapPoint的相机位姿
 */
bool Tracking::Relocalization()
{
    // Compute Bag of Words Vector
    //1.计算当前帧的Bow向量
    mCurrentFrame.ComputeBoW();

    // Relocalization is performed when tracking is lost
    // Track Lost: Query KeyFrame Database for keyframe candidates for relocalisation
    //2.在关键帧数据库中获取重定位候选帧
    vector<KeyFrame*> vpCandidateKFs = mpKeyFrameDB->DetectRelocalizationCandidates(&mCurrentFrame);

    if(vpCandidateKFs.empty())
        return false;

    const int nKFs = vpCandidateKFs.size();

    // We perform first an ORB matching with each candidate
    // If enough matches are found we setup a PnP solver
    //3.将当前帧和候选帧之间进行ORB匹配
    ORBmatcher matcher(0.75,true);

    vector<PnPsolver*> vpPnPsolvers;
    vpPnPsolvers.resize(nKFs);

    vector<vector<MapPoint*> > vvpMapPointMatches;
    vvpMapPointMatches.resize(nKFs);

    vector<bool> vbDiscarded;
    vbDiscarded.resize(nKFs);

    int nCandidates=0;

    for(int i=0; i<nKFs; i++)
    {
        KeyFrame* pKF = vpCandidateKFs[i];
        if(pKF->isBad())
            vbDiscarded[i] = true;
        else
        {
            //在pKF和mCurrentFrame之间寻找ORB匹配,并将匹配得到的3DMapPoint点储存到vvpMapPointMatches
            int nmatches = matcher.SearchByBoW(pKF,mCurrentFrame,vvpMapPointMatches[i]);
            if(nmatches<15)
            {
                vbDiscarded[i] = true;
                continue;
            }
            else
            {
                //4.如果匹配成功,就进行PnP解算
                PnPsolver* pSolver = new PnPsolver(mCurrentFrame,vvpMapPointMatches[i]);
                pSolver->SetRansacParameters(0.99,10,300,4,0.5,5.991);
                vpPnPsolvers[i] = pSolver;
                nCandidates++;
            }
        }
    }

    // Alternatively perform some iterations of P4P RANSAC
    // Until we found a camera pose supported by enough inliers
    bool bMatch = false;
    ORBmatcher matcher2(0.9,true);

    while(nCandidates>0 && !bMatch)
    {
        for(int i=0; i<nKFs; i++)
        {
            if(vbDiscarded[i])
                continue;

            // Perform 5 Ransac Iterations
            //执行5次PnP Ransac迭代,得到初步的当前帧Pose, Tcw
            vector<bool> vbInliers;
            int nInliers;
            bool bNoMore;

            PnPsolver* pSolver = vpPnPsolvers[i];
            cv::Mat Tcw = pSolver->iterate(5,bNoMore,vbInliers,nInliers);

            // If Ransac reachs max. iterations discard keyframe
            if(bNoMore)
            {
                vbDiscarded[i]=true;
                nCandidates--;
            }

            // If a Camera Pose is computed, optimize
            //优化Pose
            if(!Tcw.empty())
            {
                Tcw.copyTo(mCurrentFrame.mTcw);

                set<MapPoint*> sFound;

                //更新当前帧的对应的MapPoint
                const int np = vbInliers.size();
                for(int j=0; j<np; j++)
                {
                    if(vbInliers[j])
                    {
                        mCurrentFrame.mvpMapPoints[j]=vvpMapPointMatches[i][j];
                        sFound.insert(vvpMapPointMatches[i][j]);
                    }
                    else
                        mCurrentFrame.mvpMapPoints[j]=NULL;
                }
                //进行优化
                int nGood = Optimizer::PoseOptimization(&mCurrentFrame);

                if(nGood<10)
                    continue;

                for(int io =0; io<mCurrentFrame.N; io++)
                    if(mCurrentFrame.mvbOutlier[io])
                        mCurrentFrame.mvpMapPoints[io]=static_cast<MapPoint*>(NULL);

                // If few inliers, search by projection in a coarse window and optimize again
                //如果inliers太少了,在一个更粗的window进行搜索,并再次优化
                if(nGood<50)
                {
                    //再次进行ORB匹配
                    int nadditional =matcher2.SearchByProjection(mCurrentFrame,vpCandidateKFs[i],sFound,10,100);

                    if(nadditional+nGood>=50)
                    {
                        //再次进行优化
                        nGood = Optimizer::PoseOptimization(&mCurrentFrame);

                        // If many inliers but still not enough, search by projection again in a narrower window
                        // the camera has been already optimized with many points
                        //如果一些inlier,但是还是不够,那么在一个狭窄的窗口内再次进行搜索,再次优化
                        if(nGood>30 && nGood<50)
                        {
                            sFound.clear();
                            for(int ip =0; ip<mCurrentFrame.N; ip++)
                                if(mCurrentFrame.mvpMapPoints[ip])
                                    sFound.insert(mCurrentFrame.mvpMapPoints[ip]);
                            nadditional =matcher2.SearchByProjection(mCurrentFrame,vpCandidateKFs[i],sFound,3,64);

                            // Final optimization
                            if(nGood+nadditional>=50)
                            {
                                nGood = Optimizer::PoseOptimization(&mCurrentFrame);

                                for(int io =0; io<mCurrentFrame.N; io++)
                                    if(mCurrentFrame.mvbOutlier[io])
                                        mCurrentFrame.mvpMapPoints[io]=NULL;
                            }
                        }
                    }
                }


                // If the pose is supported by enough inliers stop ransacs and continue
                //匹配成功,退出
                if(nGood>=50)
                {
                    bMatch = true;
                    break;
                }
            }
        } //for
    }//while

    if(!bMatch)
    {
        return false;
    }
    else
    {
        //记录这次的重定位帧id
        mnLastRelocFrameId = mCurrentFrame.mnId;
        return true;
    }

}

void Tracking::Reset()
{

    cout << "System Reseting" << endl;
    if(mpViewer)
    {
        mpViewer->RequestStop();
        while(!mpViewer->isStopped())
            usleep(3000);
    }

    // Reset Local Mapping
    cout << "Reseting Local Mapper...";
    mpLocalMapper->RequestReset();
    cout << " done" << endl;

    // Reset Loop Closing
    cout << "Reseting Loop Closing...";
    mpLoopClosing->RequestReset();
    cout << " done" << endl;

    // Clear BoW Database
    cout << "Reseting Database...";
    mpKeyFrameDB->clear();
    cout << " done" << endl;

    // Clear Map (this erase MapPoints and KeyFrames)
    mpMap->clear();

    KeyFrame::nNextId = 0;
    Frame::nNextId = 0;
    mState = NO_IMAGES_YET;

    if(mpInitializer)
    {
        delete mpInitializer;
        mpInitializer = static_cast<Initializer*>(NULL);
    }

    mlRelativeFramePoses.clear();
    mlpReferences.clear();
    mlFrameTimes.clear();
    mlbLost.clear();

    if(mpViewer)
        mpViewer->Release();
}

void Tracking::ChangeCalibration(const string &strSettingPath)
{
    cv::FileStorage fSettings(strSettingPath, cv::FileStorage::READ);
    float fx = fSettings["Camera.fx"];
    float fy = fSettings["Camera.fy"];
    float cx = fSettings["Camera.cx"];
    float cy = fSettings["Camera.cy"];

    cv::Mat K = cv::Mat::eye(3,3,CV_32F);
    K.at<float>(0,0) = fx;
    K.at<float>(1,1) = fy;
    K.at<float>(0,2) = cx;
    K.at<float>(1,2) = cy;
    K.copyTo(mK);

    cv::Mat DistCoef(4,1,CV_32F);
    DistCoef.at<float>(0) = fSettings["Camera.k1"];
    DistCoef.at<float>(1) = fSettings["Camera.k2"];
    DistCoef.at<float>(2) = fSettings["Camera.p1"];
    DistCoef.at<float>(3) = fSettings["Camera.p2"];
    const float k3 = fSettings["Camera.k3"];
    if(k3!=0)
    {
        DistCoef.resize(5);
        DistCoef.at<float>(4) = k3;
    }
    DistCoef.copyTo(mDistCoef);

    mbf = fSettings["Camera.bf"];

    Frame::mbInitialComputations = true;
}

void Tracking::InformOnlyTracking(const bool &flag)
{
    mbOnlyTracking = flag;
}



} //namespace ORB_SLAM

你可能感兴趣的:(ORBSLAM2,算法,定位,SLAM)