1107 Social Clusters (30 分)
When register on a social network, you are always asked to specify your hobbies in order to find some potential friends with the same hobbies. A social cluster is a set of people who have some of their hobbies in common. You are supposed to find all the clusters.
Each input file contains one test case. For each test case, the first line contains a positive integer N (≤1000), the total number of people in a social network. Hence the people are numbered from 1 to N. Then N lines follow, each gives the hobby list of a person in the format:
Ki: hi[1] hi[2] ... hi[Ki]
where Ki (>0) is the number of hobbies, and hi[j] is the index of the j-th hobby, which is an integer in [1, 1000].
For each case, print in one line the total number of clusters in the network. Then in the second line, print the numbers of people in the clusters in non-increasing order. The numbers must be separated by exactly one space, and there must be no extra space at the end of the line.
8
3: 2 7 10
1: 4
2: 5 3
1: 4
1: 3
1: 4
4: 6 8 1 5
1: 4
3
4 3 1
题目大意:将N个人按照兴趣爱好分类,爱好有交集的归为一个社交团体,求社交团体的个数,然后将团体里面的人数进行降序输出。
思路:在并查集的操作上稍作修改,用根节点的值进行人数的统计,以每一行的第一个爱好代号作为当前数据的root,将之后的X与root进行union操作,若S[rootX]不等于root且 ≤ 0,意味着当前团体已经有了 | S[rootX] | 人,将S[rootX]的值加到S[root]上再进行合并。注意每一行开头的K:需要用字符串数组处理来获取K的值。
#include
#include
#include
#include
#define MaxNum 1001
using namespace std;
vector S(MaxNum, 0);
bool cmp(int a, int b) {
return a > b;
}
int getK(char *c);
void unionSet(int root, int X);
int find(int X);
int main()
{
int N, K;
scanf("%d", &N);
for (int i = 0; i < N; i++) {
int root, X;
char c[5];
scanf("%s%d", c, &X);
K = getK(c);
root = find(X);
S[root]--;//人数+1用负数表示
for (int j = 1; j < K; j++) {
scanf("%d", &X);
unionSet(root, X);
}
}
vector ans;
for (int i = 1; i < MaxNum; i++) {
if (S[i] < 0)
ans.push_back(abs(S[i]));
}
sort(ans.begin(), ans.end(), cmp);
printf("%d\n", ans.size());
printf("%d", ans[0]);
for (int i = 1; i < ans.size(); i++)
printf(" %d", ans[i]);
printf("\n");
return 0;
}
int getK(char *c) {
int sum = 0;
for (int i = 0; c[i] != ':'; i++)
sum = sum * 10 + c[i] - '0';
return sum;
}
void unionSet(int root, int X) {
int rootX = find(X);
if(S[rootX] <=0 && rootX != root){
S[root] += S[rootX];
S[rootX] = root;
}
}
int find(int X) {
if (S[X] <= 0)
return X;
else
return S[X] = find(S[X]);//递归地压缩路径
}