大数据技术之Hadoop(Yarn)资源调度器、案例实操

文章目录

  • 1 Yarn 资源调度器
    • 1.1 Yarn 基础架构
    • 1.2 Yarn 工作机制
    • 1.3 作业提交全过程
    • 1.4 Yarn 调度器和调度算法
      • 1.4.1 先进先出调度器(FIFO)
      • 1.4.2 容量调度器(Capacity Scheduler)
      • 1.4.3 公平调度器(Fair Scheduler)
    • 1.5 Yarn 常用命令
      • 1.5.1 yarn application 查看任务
      • 1.5.2 yarn logs 查看日志
      • 1.5.3 yarn applicationattempt 查看尝试运行的任务
      • 1.5.4 yarn container查看容器
      • 1.5.5 yarn node 查看节点状态
      • 1.5.6 yarn rmadmin 更新配置
      • 1.5.7 yarn queue 查看队列
    • 1.6 Yarn 生产环境核心参数
  • 2 Yarn 案例实操
    • 2.1 Yarn 生产环境核心参数配置案例
    • 2.2 容量调度器多队列提交案例
      • 2.2.1 配置多队列的容量调度器
      • 2.2.2 向 Hive队列提交任务
      • 2.2.3 任务优先级
    • 2.3 公平调度器案例
      • 2.3.1 配置多队列的公平调度器
      • 2.3.2 测试提交任务
    • 2.4 Yarn 的Tool 接口案例


1 Yarn 资源调度器

Yarn是一个资源调度平台,负责为运算程序提供服务器运算资源,相当于一个分布式的操作系统平台 ,而 MapReduce等运算程序则相当于运行于操作系统之上的应用程序

1.1 Yarn 基础架构

YARN主要由 ResourceManagerNodeManagerApplicationMasterContainer等组件构成。
大数据技术之Hadoop(Yarn)资源调度器、案例实操_第1张图片

1.2 Yarn 工作机制

大数据技术之Hadoop(Yarn)资源调度器、案例实操_第2张图片
(1)MR 程序提交到客户端所在的节点。
(2)YarnRunner 向ResourceManager 申请一个Application。
(3)RM 将该应用程序的资源路径返回给YarnRunner。
(4)该程序将运行所需资源提交到HDFS 上。
(5)程序资源提交完毕后,申请运行mrAppMaster。
(6)RM 将用户的请求初始化成一个Task。
(7)其中一个NodeManager 领取到Task 任务。
(8)该NodeManager 创建容器Container,并产生MRAppmaster。
(9)Container 从HDFS 上拷贝资源到本地。
(10)MRAppmaster 向RM 申请运行MapTask 资源。
(11)RM 将运行MapTask 任务分配给另外两个NodeManager,另两个NodeManager 分别领取任务并创建容器。
(12)MR 向两个接收到任务的NodeManager 发送程序启动脚本,这两个NodeManager分别启动MapTask,MapTask 对数据分区排序。
(13)MrAppMaster 等待所有MapTask 运行完毕后,向RM 申请容器,运行ReduceTask。
(14)ReduceTask 向MapTask 获取相应分区的数据。
(15)程序运行完毕后,MR 会向RM 申请注销自己。

1.3 作业提交全过程

大数据技术之Hadoop(Yarn)资源调度器、案例实操_第3张图片

作业提交过程之YARN
大数据技术之Hadoop(Yarn)资源调度器、案例实操_第4张图片
作业提交过程之HDFS & MapReduce
大数据技术之Hadoop(Yarn)资源调度器、案例实操_第5张图片
作业提交全过程详解

(1)作业提交
第1 步:Client 调用job.waitForCompletion 方法,向整个集群提交MapReduce 作业。
第2 步:Client 向RM 申请一个作业id。
第3 步:RM 给Client 返回该job 资源的提交路径和作业id。
第4 步:Client 提交jar 包、切片信息和配置文件到指定的资源提交路径。
第5 步:Client 提交完资源后,向RM 申请运行MrAppMaster。

(2)作业初始化
第6 步:当RM 收到Client 的请求后,将该job 添加到容量调度器中。
第7 步 某 一个空闲的NM 领取到该 Job。
第8 步:该NM 创建Container 并产生MRAppmaster。
第9 步:下载 Client提交的资源到本地。

(3)任务分配
第10 步 MrAppMaster 向RM申请运行多个MapTask 任务资源。
第11 步 RM 将运行MapTask 任务分配给另外两个NodeManager,另两个 NodeManager 分别领取任务并创建容器。

(4)任务运行
第12 步 MR向两个接收到任务的NodeManager 发送程序启动脚本,这两个
NodeManager 分别启动MapTask,MapTask 对数据分区排序。
第13 步 MrAppMaster 等待所有MapTask 运行完毕后,向 RM申请容器,运行ReduceTask。
第14 步 ReduceTask 向MapTask 获取相应分区的数据。
第15 步 程序运行完毕后,MR会向RM 申请注销自己。

(5)进度和状态更新
YARN中的任务将其进度和状态 (包括counter)返回给应用管理器 , 客户端每秒 (通过mapreduce.client.progressmonitor.pollinterval设置 )向应用管理器请求进度更新 , 展示给用户。

(6)作业完成
除了向应用管理器请求作业进度外 , 客户端每5秒都会通过调用waitForCompletion() 来检查作业是否完成 。 时间间隔可以通过mapreduce.client.completion.pollinterval 来设置 。 作业完成之后 , 应用管理器和Container 会清理工作状态 。作业的信息会被作业历史服务器存储以备之后用户核查 。

1.4 Yarn 调度器和调度算法

目前,Hadoop作业调度器主要有三种:FIFO容量(Capacity Scheduler)公平(Fair Scheduler)。 Apache Hadoop3.1.3默认的资源调度器是 Capacity Scheduler。
CDH框架默认调度器是 Fair Scheduler。
具体设置详见: yarn-default.xml文件

<property>
    <description>The class to use as the resource scheduler.description>
    <name>yarn.resourcemanager.scheduler.classname>
    <value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.capacity.CapacitySchedulervalue>
  property>

1.4.1 先进先出调度器(FIFO)

FIFO 调度器(First In First Out):单队列,根据提交作业的先后顺序,先来先服务。
大数据技术之Hadoop(Yarn)资源调度器、案例实操_第6张图片
优点:简单易懂;
缺点:不支持多队列,生产环境很少使用。

1.4.2 容量调度器(Capacity Scheduler)

Capacity Scheduler 是Yahoo 开发的多用户调度器。
大数据技术之Hadoop(Yarn)资源调度器、案例实操_第7张图片
1、多队列:每个队列可配置一定的资源量,每个队列采用FIFO调度策略。
2、容量保证:管理员可为每个队列设置资源最低保证和资源使用上限
3、灵活性:如果一个队列中的资源有剩余,可以暂时共享给那些需要资源的队列,而一旦该队列有新的应用程序提交,则其他队列借调的资源会归还给该队列。
4、多用户
支持多用户共享集群和多应用程序同时运行。
为了防止同一个用户的作业独占队列中的资源,该调度器会对同一用户提交的作业所占资源量进行限定。
大数据技术之Hadoop(Yarn)资源调度器、案例实操_第8张图片

1.4.3 公平调度器(Fair Scheduler)

Fair Schedulere 是Facebook 开发的多用户调度器。
大数据技术之Hadoop(Yarn)资源调度器、案例实操_第9张图片
公平调度器——缺额
大数据技术之Hadoop(Yarn)资源调度器、案例实操_第10张图片
公平调度器设计目标是:在时间尺度上,所有作业获得公平的资源。某一时刻一个作业应获资源和实际获取资源的差距叫缺额
调度器会优先为缺额大的作业分配资源大数据技术之Hadoop(Yarn)资源调度器、案例实操_第11张图片
公平调度器资源分配算法
大数据技术之Hadoop(Yarn)资源调度器、案例实操_第12张图片
公平调度器队列资源分配方式
大数据技术之Hadoop(Yarn)资源调度器、案例实操_第13张图片
3)DRF策略
DRF(Dominant Resource Fairness),我们之前说的资源,都是单一标准,例如只考虑内存(也是Yarn默认的情况)。但是很多时候我们资源有很多种,例如内存,CPU,网络带宽等,这样我们很难衡量两个应用应该分配的资源比例。
那么在YARN中,我们用DRF来决定如何调度:
假设集群一共有100 CPU和10T 内存,而应用A需要(2 CPU, 300GB),应用B需要(6 CPU,100GB)。则两个应用分别需要A(2%CPU, 3%内存)和B(6%CPU, 1%内存)的资源,这就意味着A是内存主导的, B是CPU主导的,针对这种情况,我们可以选择DRF策略对不同应用进行不同资源(CPU和内存)的一个不同比例的限制。

1.5 Yarn 常用命令

Yarn 状态的查询,除了可以在hadoop103:8088 页面查看外,还可以通过命令操作。常见的命令操作如下所示:
需求:执行WordCount 案例,并用Yarn 命令查看任务运行情况。

[Tom@hadoop102 ~]$ myhadoop.sh start
[Tom@hadoop102 hadoop-3.1.3]$ hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-3.1.3.jar wordcount /input /output

1.5.1 yarn application 查看任务

(1)列出所有Application:

[Tom@hadoop102 hadoop-3.1.3]$ yarn application -list
2021-06-23 20:24:24,680 INFO client.RMProxy: Connecting to ResourceManager at hadoop103/192.168.10.103:8032
Total number of applications (application-types: [], states: [SUBMITTED, ACCEPTED, RUNNING] and tags: []):0
                Application-Id	    Application-Name	    Application-Type	      User	     Queue	             State	       Final-State	       Progress	                       Tracking-URL

(2)根据Application 状态过滤:yarn application -list -appStates (所有状态:ALL、NEW、NEW_SAVING、SUBMITTED、ACCEPTED、RUNNING、FINISHED、FAILED、KILLED)

[Tom@hadoop102 hadoop-3.1.3]$ yarn application -list -appStates FINISHED
2021-06-23 20:27:28,032 INFO client.RMProxy: Connecting to ResourceManager at hadoop103/192.168.10.103:8032
Total number of applications (application-types: [], states: [FINISHED] and tags: []):1
                Application-Id	    Application-Name	    Application-Type	      User	     Queue	             State	       Final-State	       Progress	                       Tracking-URL
application_1624450785412_0001	          word count	           MAPREDUCE	    Tom	   default	          FINISHED	         SUCCEEDED	           100%	http://hadoop102:19888/jobhistory/job/job_1624450785412_0001

(3)Kill掉 Application

[Tom@hadoop102 hadoop-3.1.3]$ yarn application -kill application_1624450785412_0001
2021-06-23 20:30:12,783 INFO client.RMProxy: Connecting to ResourceManager at hadoop103/192.168.10.103:8032
Application application_1624450785412_0001 has already finished 

1.5.2 yarn logs 查看日志

(1)查询 Application日志:yarn logs -applicationId ApplicationId

[Tom@hadoop102 hadoop-3.1.3]$ yarn logs -applicationId application_1624450785412_0001

(2)查询 Container日志:yarn logs -applicationId ApplicationId -containerId ContainerId

[Tom@hadoop102 hadoop-3.1.3]$ yarn logs -applicationId application_1624450785412_0001 -containerId container_1624450785412_0001_01_000001

1.5.3 yarn applicationattempt 查看尝试运行的任务

(1)列出所有 Application尝试的列表:yarn applicationattempt -list ApplicationId

[Tom@hadoop102 hadoop-3.1.3]$ yarn applicationattempt -list application_1624450785412_0001
2021-06-23 20:45:26,233 INFO client.RMProxy: Connecting to ResourceManager at hadoop103/192.168.10.103:8032
Total number of application attempts :1
         ApplicationAttempt-Id	               State	                    AM-Container-Id	                       Tracking-URL
appattempt_1624450785412_0001_000001	            FINISHED	container_1624450785412_0001_01_000001	http://hadoop103:8088/proxy/application_1624450785412_0001/

(2) 打印 ApplicationAttemp状态:yarn applicationattempt -status ApplicationAttemptId

[Tom@hadoop102 hadoop-3.1.3]$ yarn applicationattempt -status appattempt_1624450785412_0001_000001
2021-06-23 20:47:29,293 INFO client.RMProxy: Connecting to ResourceManager at hadoop103/192.168.10.103:8032
Application Attempt Report : 
	ApplicationAttempt-Id : appattempt_1624450785412_0001_000001
	State : FINISHED
	AMContainer : container_1624450785412_0001_01_000001
	Tracking-URL : http://hadoop103:8088/proxy/application_1624450785412_0001/
	RPC Port : 38457
	AM Host : hadoop102
	Diagnostics : 

1.5.4 yarn container查看容器

(1)列出所有 Container:yarn container -list ApplicationAttemptId

[Tom@hadoop102 hadoop-3.1.3]$ yarn container -list appattempt_1624450785412_0001_000001
2021-06-23 20:54:48,489 INFO client.RMProxy: Connecting to ResourceManager at hadoop103/192.168.10.103:8032
Total number of containers :0
                  Container-Id	          Start Time	         Finish Time	               State	                Host	   Node Http Address	                            LOG-URL

(2)打印 Container状态:yarn container -status ContainerId

[Tom@hadoop102 hadoop-3.1.3]$ yarn container -status container_1624450785412_0001_01_000001
2021-06-23 20:57:53,744 INFO client.RMProxy: Connecting to ResourceManager at hadoop103/192.168.10.103:8032
Container with id 'container_1624450785412_0001_01_000001' doesn't exist in RM or Timeline Server.

只有在任务跑的途中才能看到container 的状态

1.5.5 yarn node 查看节点状态

列出所有节点:yarn node -list -all

[Tom@hadoop102 hadoop-3.1.3]$ yarn node -list -all
2021-06-23 21:00:36,423 INFO client.RMProxy: Connecting to ResourceManager at hadoop103/192.168.10.103:8032
Total Nodes:3
         Node-Id	     Node-State	Node-Http-Address	Number-of-Running-Containers
 hadoop103:42228	        RUNNING	   hadoop103:8042	                           0
 hadoop102:42478	        RUNNING	   hadoop102:8042	                           0
 hadoop104:45300	        RUNNING	   hadoop104:8042	                           0

1.5.6 yarn rmadmin 更新配置

加载队列配置:yarn rmadmin -refreshQueues

[Tom@hadoop102 hadoop-3.1.3]$ yarn rmadmin -refreshQueues
2021-06-23 21:02:29,801 INFO client.RMProxy: Connecting to ResourceManager at hadoop103/192.168.10.103:8033

1.5.7 yarn queue 查看队列

打印队列信息:yarn queue -status QueueName

[Tom@hadoop102 hadoop-3.1.3]$ yarn queue -status default
2021-06-23 21:04:19,106 INFO client.RMProxy: Connecting to ResourceManager at hadoop103/192.168.10.103:8032
Queue Information : 
Queue Name : default
	State : RUNNING
	Capacity : 100.0%
	Current Capacity : .0%
	Maximum Capacity : 100.0%
	Default Node Label expression : 
	Accessible Node Labels : *
	Preemption : disabled
	Intra-queue Preemption : disabled

1.6 Yarn 生产环境核心参数

大数据技术之Hadoop(Yarn)资源调度器、案例实操_第14张图片

2 Yarn 案例实操

注:调整下列参数之前尽量拍摄Linux 快照,否则后续的案例,还需要重写准备集群。

2.1 Yarn 生产环境核心参数配置案例

(1)需求:从1G 数据中,统计每个单词出现次数。服务器3 台,每台配置4G 内存,4 核CPU,4 线程。
(2)需求分析:1G / 128m = 8 个MapTask;1 个ReduceTask;1 个mrAppMaster平均每个节点运行10 个 / 3 台 ≈ 3 个任务(4 3 3)
(3)修改yarn-site.xml 配置参数如下:


<property>
	<description>The class to use as the resource scheduler.	description>
	<name>yarn.resourcemanager.scheduler.classname>
	<value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.capacity.CapacitySchedulervalue>
property>


<property>
	<description>Number of threads to handle scheduler interface.description>
	<name>yarn.resourcemanager.scheduler.client.thread-countname>
	<value>8value>
property>


<property>
	<description>Enable auto-detection of node capabilities such as
memory and CPU.description>
	<name>yarn.nodemanager.resource.detect-hardware-capabilitiesname>
	<value>falsevalue>
property>


<property>
	<description>Flag to determine if logical processors(such as
hyperthreads) should be counted as cores. Only applicable on Linux
when yarn.nodemanager.resource.cpu-vcores is set to -1 and
yarn.nodemanager.resource.detect-hardware-capabilities is true.description>
	<name>yarn.nodemanager.resource.count-logical-processors-as-coresname>
	<value>falsevalue>
property>


<property>
	<description>Multiplier to determine how to convert phyiscal cores to
vcores. This value is used if yarn.nodemanager.resource.cpu-vcores is set to -1(which implies auto-calculate vcores) and
yarn.nodemanager.resource.detect-hardware-capabilities is set to true. Thenumber of vcores will be calculated asnumber of CPUs * multiplier.description>
	<name>yarn.nodemanager.resource.pcores-vcores-multipliername>
	<value>1.0value>
property>


<property>
	<description>Amount of physical memory, in MB, that can be allocated for containers. If set to -1 and yarn.nodemanager.resource.detect-hardware-capabilities is true, it is automatically calculated(in case of Windows and Linux).In other cases, the default is 8192MB.description>
	<name>yarn.nodemanager.resource.memory-mbname>
	<value>4096value>
property>


<property>
	<description>Number of vcores that can be allocated
for containers. This is used by the RM scheduler when allocating
resources for containers. This is not used to limit the number of
CPUs used by YARN containers. If it is set to -1 and
yarn.nodemanager.resource.detect-hardware-capabilities is true, it is automatically determined from the hardware in case of Windows and Linux.In other cases, number of vcores is 8 by default.description>
	<name>yarn.nodemanager.resource.cpu-vcoresname>
	<value>4value>
property>


<property>
	<description>The minimum allocation for every container request at the RMin MBs. Memory requests lower than this will be set to the value of thisproperty. Additionally, a node manager that is configured to have less memorythan this value will be shut down by the resource manager.description>
	<name>yarn.scheduler.minimum-allocation-mbname>
	<value>1024value>
property>


<property>
	<description>The maximum allocation for every container request at the RMin MBs. Memory requests higher than this will throw anInvalidResourceRequestException.description>
	<name>yarn.scheduler.maximum-allocation-mbname>
	<value>2048value>
property>


<property>
	<description>The minimum allocation for every container request at the RMin terms of virtual CPU cores. Requests lower than this will be set to thevalue of this property. Additionally, a node manager that is configured tohave fewer virtual cores than this value will be shut down by the resourcemanager.description>
	<name>yarn.scheduler.minimum-allocation-vcoresname>
	<value>1value>
property>


<property>
	<description>The maximum allocation for every container request at the RMin terms of virtual CPU cores. Requests higher than this will throw an InvalidResourceRequestExceptiondescription>
	<name>yarn.scheduler.maximum-allocation-vcoresname>
	<value>2value>
property>


<property>
	<description>Whether virtual memory limits will be enforced for containers.description>
	<name>yarn.nodemanager.vmem-check-enabledname>
	<value>falsevalue>
property>


<property>
	<description>Ratio between virtual memory to physical memory whensetting memory limits for containers. Container allocations areexpressed in terms of physical memory, and virtual memory usageis allowed to exceed this allocation by this ratio.description>
	<name>yarn.nodemanager.vmem-pmem-rationame>
	<value>2.1value>
property>

大数据技术之Hadoop(Yarn)资源调度器、案例实操_第15张图片
(4)分发配置。如果集群的硬件资源不一致,要每个NodeManager 单独配置。
(5)重启集群

[Tom@hadoop102 hadoop-3.1.3]$ sbin/stop-yarn.sh
[Tom@hadoop103 hadoop-3.1.3]$ sbin/start-yarn.sh

(6)执行WordCount 程序

[Tom@hadoop102 hadoop-3.1.3]$ hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-3.1.3.jar wordcount /input /output

(7)观察Yarn 任务执行页面
http://hadoop103:8088/cluster/apps

2.2 容量调度器多队列提交案例

在生产环境怎么创建队列?

(1)调度器默认就1 个default 队列,不能满足生产要求。
(2)按照框架:hive /spark/ flink 每个框架的任务放入指定的队列(企业用的不是特别多)
(3)按照业务模块:登录注册、购物车、下单、业务部门1、业务部门2

创建多队列的好处?

(1)因为担心员工不小心,写递归死循环代码,把所有资源全部耗尽。
(2)实现任务的降级使用,特殊时期保证重要的任务队列资源充足。11.11 6.18 业务部门1(重要)=》业务部门2(比较重要)=》下单(一般)=》购物车(一般)=》登录注册(次要)

需求

需求 1:default 队列占总内存的 40%,最大资源容量占总资源hive 队列占总内存的最大资源容量占总资源 80%。
需求 2:配置队列优先级

2.2.1 配置多队列的容量调度器

(1)在 capacity-scheduler.xml中配置如下:
修改如下配置:


<property>
	<name>yarn.scheduler.capacity.root.queuesname>
	<value>default,hivevalue>
	<description>
	The queues at the this level (root is the root queue).
	description>
property>


<property>
	<name>yarn.scheduler.capacity.root.default.capacityname>
	<value>40value>
property>


<property>
	<name>yarn.scheduler.capacity.root.default.maximum-capacityname>
	<value>60value>
property>

为新加队列添加必要属性:


<property>
	<name>yarn.scheduler.capacity.root.hive.capacityname>
	<value>60value>
property>


<property>
	<name>yarn.scheduler.capacity.root.hive.user-limit-factorname>
	<value>1value>
property>


<property>
	<name>yarn.scheduler.capacity.root.hive.maximum-capacityname>
	<value>80value>
property>


<property>
	<name>yarn.scheduler.capacity.root.hive.statename>
	<value>RUNNINGvalue>
property>


<property>
	<name>yarn.scheduler.capacity.root.hive.acl_submit_applicationsname>
	<value>*value>
property>


<property>
	<name>yarn.scheduler.capacity.root.hive.acl_administer_queuename>
	<value>*value>
property>


<property>
	<name>yarn.scheduler.capacity.root.hive.acl_application_max_priorityname>
	<value>*value>
property>



<property>
	<name>yarn.scheduler.capacity.root.hive.maximum-application-lifetimename>
	<value>-1value>
property>


<property>
	<name>yarn.scheduler.capacity.root.hive.default-application-lifetimename>
	<value>-1value>
property>

(2)分发配置文件
(3)后重启 Yarn或者执行yarn rmadmin -refreshQueues 刷新队列,就可以看到两条队列:

[Tom@hadoop102 hadoop]$ yarn rmadmin -refreshQueues
2021-06-23 22:11:21,000 INFO client.RMProxy: Connecting to ResourceManager at hadoop103/192.168.10.103:8033

大数据技术之Hadoop(Yarn)资源调度器、案例实操_第16张图片

2.2.2 向 Hive队列提交任务

(1)hadoop jar的方式

[Tom@hadoop102 hadoop-3.1.3]$ hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-3.1.3.jar wordcount -Dmapreduce.job.queuename=hive /input /output

-D表示运行时改变参数值

(2)打 jar包的方式
默认的任务提交都是提交到default队列的。如果希望向其他队列提交任务,需要在Driver中声明:

public class WcDr vier {
	public static void main(String[] args) throws IOException,ClassNotFoundException, InterruptedException {
		Configuration conf = new Configuration();
		conf.set("mapreduce.job.queuename","hive");
		//1. 获取一个 Job 实例
		Job job = Job.getInstance(conf);
		。。。 。。。
		//6. 提交 Job
		boolean b = job.waitForCompletion(true);
		System.exit(b ? 0 : 1);
	}
}

这样,这个任务在集群提交时,就会提交到hive队列:
大数据技术之Hadoop(Yarn)资源调度器、案例实操_第17张图片

2.2.3 任务优先级

容量调度器,支持任务优先级的配置,在资源紧张时,优先级高的任务将优先获取资源。默认情况默认情况, Yarn将所有任务的优先级限制为 0,若想使用任务的优先级功能,须开放该限制。

(1)修改 yarn-site.xml文件,增加以下参数

<property>
	<name>yarn.cluster.max-application-priorityname>
	<value>5value>
property>

(2)分发配置,并重启 Yarn

[Tom@hadoop102 hadoop]$ xsync yarn site.xml
[Tom@hadoop103 hadoop 3.1.3]$ sbin/stop yarn.sh
[Tom@hadoop103 hadoop 3.1.3]$ sbin/start yarn.sh

(3)模拟资源紧张环境,可连续提交以下任务,直到新提交的任务申请不到资源为止。

[Tom@hadoop102 hadoop-3.1.3]$ hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-3.1.3.jar pi 5 2000000

大数据技术之Hadoop(Yarn)资源调度器、案例实操_第18张图片
(4)再次重新提交优先级高的任务

[Tom@hadoop104 hadoop-3.1.3]$ hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-3.1.3.jar pi -Dmapreduce.job.priority=5 5 2000000

大数据技术之Hadoop(Yarn)资源调度器、案例实操_第19张图片
(5)也可以通过以下命令修改正在执行的任务的优先级。
yarn application -appID ApplicationID -updatePriority 优先级

[Tom@hadoop102 hadoop 3.1.3]$ yarn application -appID
application_1611133087930_0009 -updatePriority 5

2.3 公平调度器案例

需求

创建两个队列,分别是test和Tom(以用户所属组命名)。期望实现以下效果,若用户提交任务时指定队列,则任务提交到指定队列运行,若未指定队列,test用户提交的任务到 root.group.test队列运行,Tom提交的任务到 root.group.Tom队列运行(注:group为用户所属组)。
公平调度器的配置涉及到两个文件,一个是yarn-site.xml,另一个是公平调度器队列分配文件fair-scheduler.xml(文件名可自定义)。
(1)配置文件参考资料
https://hadoop.apache.org/docs/r3.1.3/hadoop-yarn/hadoop-yarn-site/FairScheduler.html
(2)任务队列放置规则参考资料
https://blog.cloudera.com/untangling-apache-hadoop-yarn-part-4-fair-scheduler-queue-basics/

2.3.1 配置多队列的公平调度器

(1)修改 yarn-site.xml文件,加入以下参数

<property>
	<name>yarn.resourcemanager.scheduler.classname>
	<value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.fair.FairSchedulervalue>
	<description>配置使用公平调度器description>
property>

<property>
	<name>yarn.scheduler.fair.allocation.filename>
	<value>/opt/module/hadoop-3.1.3/etc/hadoop/fair-scheduler.xmlvalue>
	<description>指明公平调度器队列分配配置文件description>
property>

<property>
	<name>yarn.scheduler.fair.preemptionname>
	<value>falsevalue>
	<description>禁止队列间资源抢占description>
property>

(2)配置 fair-scheduler.xml


<allocations>
	
	<queueMaxAMShareDefault>0.5queueMaxAMShareDefault>
	
	<queueMaxResourcesDefault>4096mb,4vcoresqueueMaxResourcesDefault>

	
	<queue name="test">
	
	<minResources>2048mb,2vcoresminResources>
	
	<maxResources>4096mb,4vcoresmaxResources>
	
	<maxRunningApps>4maxRunningApps>
	
	<maxAMShare>0.5maxAMShare>
	
	<weight>1.0weight>
	
	<schedulingPolicy>fairschedulingPolicy>
	queue>

	
	<queue name="Tom" type="parent">
	
	<minResources>2048mb,2vcoresminResources>
	
	<maxResources>4096mb,4vcoresmaxResources>
	
	<maxRunningApps>4maxRunningApps>
	
	<maxAMShare>0.5maxAMShare>
	
	<weight>1.0weight>
	
	<schedulingPolicy>fairschedulingPolicy>
	queue>

	
	<queuePlacementPolicy>
	
	<rule name="specified" create="false"/>
	
	<rule name="nestedUserQueue" create="true">
	<rule name="primaryGroup" create="false"/>
	rule>
	
	<rule name="reject" />
	queuePlacementPolicy>
allocations>

(3)分发配置并重启 Yarn

[Tom@hadoop102 hadoop]$ xsync yarn-site.xml
[Tom@hadoop102 hadoop]$ xsync fair-scheduler.xml

[Tom@hadoop103 hadoop-3.1.3]$ sbin/stop-yarn.sh
[Tom@hadoop103 hadoop-3.1.3]$ sbin/start-yarn.sh

2.3.2 测试提交任务

(1)提交任务时指定队列,按照配置规则,任务会到指定的 root.test队列

[Tom@hadoop102 hadoop]$ hadoop jar /opt/module/hadoop-3.1.3/share/hadoop/mapreduce/hadoop-mapreduce-examples-3.1.3.jar pi -Dmapreduce.job.queuename=root.test 1 1

大数据技术之Hadoop(Yarn)资源调度器、案例实操_第20张图片
(2)提交任务时不指定队列,按照配置规则,任务会到root.Tom.Tom队列

[Tom@hadoop102 hadoop]$ hadoop jar /opt/module/hadoop-3.1.3/share/hadoop/mapreduce/hadoop-mapreduce-examples-3.1.3.jar pi 1 1

2.4 Yarn 的Tool 接口案例

回顾:

[Tom@hadoop102 hadoop-3.1.3]$ hadoop jar wc.jar com.Tom.mapreduce.wordcount2.WordCountDriver /input /output1

期望可以动态传参,结果报错,误认为是第一个输入参数。

[Tom@hadoop102 hadoop-3.1.3]$ hadoop jar wc.jar com.Tom.mapreduce.wordcount2.WordCountDriver -Dmapreduce.job.queuename=root.test /input /output2

需求:自己写的程序也可以动态修改参数。 编写 Yarn的 Tool接口。
具体步骤:
(1)新建 Maven项目 YarnDemo pom如下:


<project xmlns="http://maven.apache.org/POM/4.0.0"
	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
	xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
	<modelVersion>4.0.0modelVersion>
	
	<groupId>com.Tom.hadoopgroupId>
	<artifactId>yarn_tool_testartifactId>
	<version>1.0-SNAPSHOTversion>
	
	<dependencies>
		<dependency>
			<groupId>org.apache.hadoopgroupId>
			<artifactId>hadoop-clientartifactId>
			<version>3.1.3version>
		dependency>
	dependencies>
project>

(2)新建 com.atguigu.yarn包名
(3)创建类 WordCount并实现 Tool接口

package com.Tom.yarn;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.Tool;

import java.io.IOException;

public class WordCount implements Tool {
    private Configuration conf;

    // 核心驱动(conf 需要传入)
    public int run(String[] args) throws Exception {
        Job job = Job.getInstance(conf);

        job.setJarByClass(WordCountDriver.class);

        job.setMapperClass(WordCountMapper.class);
        job.setReducerClass(WordCountReducer.class);

        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(IntWritable.class);

        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);

        FileInputFormat.setInputPaths(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));

        return job.waitForCompletion(true) ? 0 : 1;
    }

    public void setConf(Configuration conf) {
        this.conf = conf;
    }

    public Configuration getConf() {
        return conf;
    }

    // mapper
    public static class WordCountMapper extends Mapper<LongWritable, Text, Text, IntWritable> {
        private Text outK = new Text();
        private IntWritable outV = new IntWritable(1);

        @Override
        protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
            // 1 获取一行
            String line = value.toString();

            // 2 切割
            String[] words = line.split(" ");

            // 3 循环遍历写出
            for (String word : words) {
                outK.set(word);

                context.write(outK, outV);
            }
        }
    }

    // reducer
    public static class WordCountReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
        private IntWritable outV = new IntWritable();

        @Override
        protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
            int sum = 0;
            for (IntWritable value : values) {
                sum += value.get();
            }
            outV.set(sum);

            context.write(key, outV);
        }
    }

}

(4)新建 WordCountDriver

package com.Tom.yarn;


import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;

import java.util.Arrays;

public class WordCountDriver {
    private static Tool tool;

    public static void main(String[] args) throws Exception {
        // 创建配置
        Configuration conf = new Configuration();

        switch (args[0]) {
            case "wordcount":
                tool = new WordCount();
                break;
            default:
                throw new RuntimeException("no such tool" + args[0]);
        }

        // 执行程序
        int run = ToolRunner.run(conf, tool, Arrays.copyOfRange(args, 1, args.length));

        System.exit(run);
    }
}

在 HDFS上准备输入文件,假设为 /input目录,向集群提交该jar 包

[Tom@hadoop102 hadoop-3.1.3]$ yarn jar YarnDemo.jar com.Tom.yarn.WordCountDriver wordcount /input /output3

注意此时提交的3个参数,第一个用于生成特定的 Tool,第二个和第三个为输入输出目录。此时如果我们希望加入设置参数,可以在 wordcount后面添加参数,例如:

[Tom@hadoop102 hadoop-3.1.3]$ yarn jar YarnDemo.jar com.Tom.yarn.WordCountDriver wordcount -Dmapreduce.job.queuename=root.test /input /output2

注:以上操作全部做完过后,快照回去或者手动将配置文件修改成之前的状态,因为本身资源就不够,分成了这么多,不方便以后测试。


参考:
https://www.bilibili.com/video/BV1Qp4y1n7ENspm_id_from=333.788.b_636f6d6d656e74.7

你可能感兴趣的:(大数据开发,大数据,hadoop,yarn)