OpenCV 卡尔曼滤波器的使用

首先来看一下OpenCV中关于Kalman滤波的结构和函数定义

CvKalman

Kalman 滤波器状态

typedef struct CvKalman

{

    int MP;                     /* 测量向量维数 */

    int DP;                     /* 状态向量维数 */

    int CP;                     /* 控制向量维数 */



    /* 向后兼容字段 */

#if 1

    float* PosterState;         /* =state_pre->data.fl */

    float* PriorState;          /* =state_post->data.fl */

    float* DynamMatr;           /* =transition_matrix->data.fl */

    float* MeasurementMatr;     /* =measurement_matrix->data.fl */

    float* MNCovariance;        /* =measurement_noise_cov->data.fl */

    float* PNCovariance;        /* =process_noise_cov->data.fl */

    float* KalmGainMatr;        /* =gain->data.fl */

    float* PriorErrorCovariance;/* =error_cov_pre->data.fl */

    float* PosterErrorCovariance;/* =error_cov_post->data.fl */

    float* Temp1;               /* temp1->data.fl */

    float* Temp2;               /* temp2->data.fl */

#endif



    CvMat* state_pre;           /* 预测状态 (x'(k)): 

                                    x(k)=A*x(k-1)+B*u(k) */

    CvMat* state_post;          /* 矫正状态 (x(k)):

                                    x(k)=x'(k)+K(k)*(z(k)-H*x'(k)) */

    CvMat* transition_matrix;   /* 状态传递矩阵 state transition matrix (A) */

    CvMat* control_matrix;      /* 控制矩阵 control matrix (B)

                                   (如果没有控制,则不使用它)*/

    CvMat* measurement_matrix;  /* 测量矩阵 measurement matrix (H) */

    CvMat* process_noise_cov;   /* 过程噪声协方差矩阵

                                        process noise covariance matrix (Q) */

    CvMat* measurement_noise_cov; /* 测量噪声协方差矩阵

                                          measurement noise covariance matrix (R) */

    CvMat* error_cov_pre;       /* 先验误差计协方差矩阵

                                        priori error estimate covariance matrix (P'(k)):

                                     P'(k)=A*P(k-1)*At + Q)*/

    CvMat* gain;                /* Kalman 增益矩阵 gain matrix (K(k)):

                                    K(k)=P'(k)*Ht*inv(H*P'(k)*Ht+R)*/

    CvMat* error_cov_post;      /* 后验错误估计协方差矩阵

                                        posteriori error estimate covariance matrix (P(k)):

                                     P(k)=(I-K(k)*H)*P'(k) */

    CvMat* temp1;               /* 临时矩阵 temporary matrices */

    CvMat* temp2;

    CvMat* temp3;

    CvMat* temp4;

    CvMat* temp5;

}

CvKalman;

结构 CvKalman 用来保存 Kalman 滤波器状态。它由函数 cvCreateKalman 创建,由函数f cvKalmanPredict 和 cvKalmanCorrect 更新,由 cvReleaseKalman 释放. 通常该结构是为标准 Kalman 所使用的 (符号和公式都借自非常优秀的 Kalman 教程 [Welch95]):

系统运动方程:
系统观测方程:

其中:

xk(xk − 1)  - 系统在时刻 k (k-1) 的状态向量 (state of the system at the moment k (k-1))
zk  - 在时刻 k 的系统状态测量向量 (measurement of the system state at the moment k)
uk  - 应用于时刻 k 的外部控制 (external control applied at the moment k)
wk    vk  分别为正态分布的运动和测量噪声
p(w) ~ N(0,Q)
p(v) ~ N(0,R),
即,
Q - 运动噪声的相关矩阵,常量或变量
R - 测量噪声的相关矩阵,常量或变量

对标准 Kalman 滤波器,所有矩阵: A, B, H, Q 和 R 都是通过 cvCreateKalman 在分配结构 CvKalman 时初始化一次。但是,同样的结构和函数,通过在当前系统状态邻域中线性化扩展 Kalman 滤波器方程,可以用来模拟扩展 Kalman 滤波器,在这种情况下, A, B, H (也许还有 Q 和 R) 在每一步中都被更新。

CreateKalman

分配 Kalman 滤波器结构

CvKalman* cvCreateKalman( int dynam_params, int measure_params, int control_params=0 );

dynam_params
状态向量维数
measure_params
测量向量维数
control_params
控制向量维数

函数 cvCreateKalman 分配 CvKalman 以及它的所有矩阵和初始参数

ReleaseKalman

释放 Kalman 滤波器结构

void cvReleaseKalman( CvKalman** kalman );

kalman
指向 Kalman 滤波器结构的双指针

函数 cvReleaseKalman 释放结构 CvKalman 和里面所有矩阵

KalmanPredict

估计后来的模型状态

const CvMat* cvKalmanPredict( CvKalman* kalman, const CvMat* control=NULL );

#define cvKalmanUpdateByTime cvKalmanPredict

kalman
Kalman 滤波器状态
control
控制向量 (uk), 如果没有外部控制 (control_params=0) 应该为 NULL

函数 cvKalmanPredict 根据当前状态估计后来的随机模型状态,并存储于 kalman->state_pre:

,

其中

x'k  是预测状态 (kalman->state_pre),
xk − 1  是前一步的矫正状态 (kalman->state_post),应该在开始的某个地方初始化,即缺省为零向量,
uk  是外部控制(control 参数),
P'k  是先验误差相关矩阵 (kalman->error_cov_pre)
Pk − 1  是前一步的后验误差相关矩阵(kalman->error_cov_post),应该在开始的某个地方初始化,即缺省为单位矩阵.

函数返回估计得到的状态值

KalmanCorrect

调节模型状态

const CvMat* cvKalmanCorrect( CvKalman* kalman, const CvMat* measurement );

#define cvKalmanUpdateByMeasurement cvKalmanCorrect

kalman
被更新的 Kalman 结构的指针
measurement
指向测量向量的指针,向量形式为 CvMat

函数 cvKalmanCorrect 在给定的模型状态的测量基础上,调节随机模型状态:

其中

zk  - 给定测量(mesurement parameter)
Kk  - Kalman "增益" 矩阵

函数存储调节状态到 kalman->state_post 中并且输出时返回它。

 

下面实现了一个简单的跟踪小程序,直接给出程序源码:

void CSLAMApplicationView::OnEKFTracking()

{

	// Initialize Kalman filter object, window, number generator, etc

	cvNamedWindow( "Kalman", 1 );//创建窗口,当为的时候,表示窗口大小自动设定

	CvRandState rng;

	cvRandInit( &rng, 0, 1, -1, CV_RAND_UNI );/* CV_RAND_UNI 指定为均匀分布类型、随机数种子为-1 */



	IplImage* img = cvCreateImage( cvSize(500,500), 8, 3 );

	CvKalman* kalman = cvCreateKalman( 2, 1, 0 );/*状态向量为维,观测向量为维,无激励输入维*/



	// State is phi, delta_phi - angle and angular velocity

	// Initialize with random guess

	CvMat* x_k = cvCreateMat( 2, 1, CV_32FC1 );/*创建行列、元素类型为CV_32FC1,元素为位单通道浮点类型矩阵。*/

	cvRandSetRange( &rng, 0, 0.1, 0 );/*设置随机数范围,随机数服从正态分布,均值为,均方差为.1,通道个数为*/

	rng.disttype = CV_RAND_NORMAL;

	cvRand( &rng, x_k ); /*随机填充数组*/



	// Process noise

	CvMat* w_k = cvCreateMat( 2, 1, CV_32FC1 );



	// Measurements, only one parameter for angle

	CvMat* z_k = cvCreateMat( 1, 1, CV_32FC1 );/*定义观测变量*/

	cvZero( z_k ); /*矩阵置零*/



	// Transition matrix F describes model parameters at and k and k+1

	const float F[] = { 1, 1, 0, 1 }; /*状态转移矩阵*/

	memcpy( kalman->transition_matrix->data.fl, F, sizeof(F));

	/*初始化转移矩阵,行列,具体见CvKalman* kalman = cvCreateKalman( 2, 1, 0 );*/



	// Initialize other Kalman parameters

	cvSetIdentity( kalman->measurement_matrix, cvRealScalar(1) );/*观测矩阵*/

	cvSetIdentity( kalman->process_noise_cov, cvRealScalar(1e-5) );/*过程噪声*/

	cvSetIdentity( kalman->measurement_noise_cov, cvRealScalar(1e-1) );/*观测噪声*/

	cvSetIdentity( kalman->error_cov_post, cvRealScalar(1) );/*后验误差协方差*/



	// Choose random initial state

	cvRand( &rng, kalman->state_post );/*初始化状态向量*/



	// Make colors

	CvScalar yellow = CV_RGB(255,255,0);/*依次为红绿蓝三色*/

	CvScalar white = CV_RGB(255,255,255);

	CvScalar red = CV_RGB(255,0,0);



	while( 1 ){

		// Predict point position

		const CvMat* y_k = cvKalmanPredict( kalman, 0 );/*激励项输入为*/



		// Generate Measurement (z_k)

		cvRandSetRange( &rng, 0, sqrt( kalman->measurement_noise_cov->data.fl[0] ), 0 );/*设置观测噪声*/	

		cvRand( &rng, z_k );

		cvMatMulAdd( kalman->measurement_matrix, x_k, z_k, z_k );



		// Update Kalman filter state

		cvKalmanCorrect( kalman, z_k );



		// Apply the transition matrix F and apply "process noise" w_k

		cvRandSetRange( &rng, 0, sqrt( kalman->process_noise_cov->data.fl[0] ), 0 );/*设置正态分布过程噪声*/

		cvRand( &rng, w_k );

		cvMatMulAdd( kalman->transition_matrix, x_k, w_k, x_k );



		// Plot Points

		cvZero( img );/*创建图像*/

		// Yellow is observed state 黄色是观测值

		//cvCircle(IntPtr, Point, Int32, MCvScalar, Int32, LINE_TYPE, Int32)

		//对应于下列其中,shift为数据精度

		//cvCircle(img, center, radius, color, thickness, lineType, shift)

		//绘制或填充一个给定圆心和半径的圆

		cvCircle( img, 

			cvPoint( cvRound(img->width/2 + img->width/3*cos(z_k->data.fl[0])),

			cvRound( img->height/2 - img->width/3*sin(z_k->data.fl[0])) ), 

			4, yellow );

		// White is the predicted state via the filter

		cvCircle( img, 

			cvPoint( cvRound(img->width/2 + img->width/3*cos(y_k->data.fl[0])),

			cvRound( img->height/2 - img->width/3*sin(y_k->data.fl[0])) ), 

			4, white, 2 );

		// Red is the real state

		cvCircle( img, 

			cvPoint( cvRound(img->width/2 + img->width/3*cos(x_k->data.fl[0])),

			cvRound( img->height/2 - img->width/3*sin(x_k->data.fl[0])) ),

			4, red );

		CvFont font;

		cvInitFont(&font,CV_FONT_HERSHEY_SIMPLEX,0.5f,0.5f,0,1,8);

		cvPutText(img,"Yellow:observe",cvPoint(0,20),&font,cvScalar(0,0,255));

		cvPutText(img,"While:predict",cvPoint(0,40),&font,cvScalar(0,0,255));

		cvPutText(img,"Red:real",cvPoint(0,60),&font,cvScalar(0,0,255));

		cvPutText(img,"Press Esc to Exit...",cvPoint(0,80),&font,cvScalar(255,255,255));

		cvShowImage( "Kalman", img );		



		// Exit on esc key

		if(cvWaitKey(100) == 27) 

			break;

	}

	cvReleaseImage(&img);/*释放图像*/

	cvReleaseKalman(&kalman);/*释放kalman滤波对象*/

	cvDestroyAllWindows();/*释放所有窗口*/

}
 

Kalman跟踪

参考:opencv中文论坛

 

另外我的程序还实现了图片的打开和保存功能,具体也是参考了论坛的MFC中应用Opencv的帖子,不过我稍微改进了一下,不进行图片的缩放,显示源图像的大小:

首先是doc类定义CImage* m_Image;

CSLAMApplicationDoc::CSLAMApplicationDoc()

{

	m_Image=NULL;

}



CSLAMApplicationDoc::~CSLAMApplicationDoc()

{

	if(m_Image!=NULL)

	{

		m_Image->Destroy();

		delete m_Image;

	}

}



// CSLAMApplicationDoc 命令



BOOL CSLAMApplicationDoc::OnOpenDocument(LPCTSTR lpszPathName)

{

	if (!CDocument::OnOpenDocument(lpszPathName))

		return FALSE;



	// TODO:  Add your specialized creation code here

	m_Image=new CImage();

	m_Image->Load(lpszPathName);



	return TRUE;

}



BOOL CSLAMApplicationDoc::OnSaveDocument(LPCTSTR lpszPathName)

{

	// TODO: Add your specialized code here and/or call the base class

	m_Image->Save(lpszPathName);



	return CDocument::OnSaveDocument(lpszPathName);

}

// CSLAMApplicationView 绘制



void CSLAMApplicationView::OnDraw(CDC* pDC)

{

	CSLAMApplicationDoc* pDoc = GetDocument();

	ASSERT_VALID(pDoc);

	if (!pDoc)

		return;



	// TODO: 在此处为本机数据添加绘制代码

	CImage *img=pDoc->m_Image;

	if(img!=NULL)

	{

		CRect r;

		GetClientRect (&r);

		if(img->Width()<r.Width())

		{

			r.right=img->Width();

		}

		if(img->Height()<r.Height())

		{

			r.bottom=img->Height();

		}

		pDoc->m_Image->DrawToHDC(pDC->GetSafeHdc(),r);

	}

	

打开图像 

你可能感兴趣的:(opencv)