ThreadPoolExecutor原理和使用

大家先从ThreadPoolExecutor的整体流程入手:ThreadPoolExecutor原理和使用_第1张图片 

针对ThreadPoolExecutor代码。我们来看下execute方法:

public void execute(Runnable command) {
        if (command == null)
            throw new NullPointerException();
	//poolSize大于等于corePoolSize时不添加线程,反之新初始化线程
        if (poolSize >= corePoolSize || !addIfUnderCorePoolSize(command)) {
	    //线程运行状态外为运行,同一时候能够加入到队列中
            if (runState == RUNNING && workQueue.offer(command)) {
                if (runState != RUNNING || poolSize == 0)
                    ensureQueuedTaskHandled(command);
            }
	    //poolSize大于等于corePoolSize时。新初始化线程
            else if (!addIfUnderMaximumPoolSize(command))
		//无法加入初始化运行线程,怎么运行reject操作(调用RejectedExecutionHandler)
                reject(command); // is shutdown or saturated
        }
    }

 我们再看下真正的线程运行者(Worker):

	private final class Worker implements Runnable {
	/**
         * Runs a single task between before/after methods.
         */
        private void runTask(Runnable task) {
            final ReentrantLock runLock = this.runLock;
            runLock.lock();
            try {
                /*
                 * If pool is stopping ensure thread is interrupted;
                 * if not, ensure thread is not interrupted. This requires
                 * a double-check of state in case the interrupt was
                 * cleared concurrently with a shutdownNow -- if so,
                 * the interrupt is re-enabled.
                 */
		 //当线程池的运行状态为关闭等。则运行当前线程的interrupt()操作
                if ((runState >= STOP ||
                    (Thread.interrupted() && runState >= STOP)) &&
                    hasRun)
                    thread.interrupt();
                /*
                 * Track execution state to ensure that afterExecute
                 * is called only if task completed or threw
                 * exception. Otherwise, the caught runtime exception
                 * will have been thrown by afterExecute itself, in
                 * which case we don't want to call it again.
                 */
                boolean ran = false;
                beforeExecute(thread, task);
                try {
		    //任务运行
                    task.run();
                    ran = true;
                    afterExecute(task, null);
                    ++completedTasks;
                } catch (RuntimeException ex) {
                    if (!ran)
                        afterExecute(task, ex);
                    throw ex;
                }
            } finally {
                runLock.unlock();
            }
        }

        /**
         * Main run loop
         */
        public void run() {
            try {
                hasRun = true;
                Runnable task = firstTask;
                firstTask = null;
		//推断是否存在须要运行的任务
                while (task != null || (task = getTask()) != null) {
                    runTask(task);
                    task = null;
                }
            } finally {
		//假设没有,则将工作线程移除,当poolSize为0是则尝试关闭线程池
                workerDone(this);
            }
        }
    }

    /* Utilities for worker thread control */

    /**
     * Gets the next task for a worker thread to run.  The general
     * approach is similar to execute() in that worker threads trying
     * to get a task to run do so on the basis of prevailing state
     * accessed outside of locks.  This may cause them to choose the
     * "wrong" action, such as trying to exit because no tasks
     * appear to be available, or entering a take when the pool is in
     * the process of being shut down.  These potential problems are
     * countered by (1) rechecking pool state (in workerCanExit)
     * before giving up, and (2) interrupting other workers upon
     * shutdown, so they can recheck state. All other user-based state
     * changes (to allowCoreThreadTimeOut etc) are OK even when
     * performed asynchronously wrt getTask.
     *
     * @return the task
     */
    Runnable getTask() {
        for (;;) {
            try {
                int state = runState;
                if (state > SHUTDOWN)
                    return null;
                Runnable r;
                if (state == SHUTDOWN)  // Help drain queue
                    r = workQueue.poll();
		//当线程池大于corePoolSize,同一时候,存在运行超时时间,则等待对应时间,拿出队列中的线程
                else if (poolSize > corePoolSize || allowCoreThreadTimeOut)
                    r = workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS);
                else
		//堵塞等待队列中能够取到新线程
                    r = workQueue.take();
                if (r != null)
                    return r;
		//推断线程池运行状态。假设大于corePoolSize,或者线程队列为空,也或者线程池为终止的工作线程能够销毁
                if (workerCanExit()) {
                    if (runState >= SHUTDOWN) // Wake up others
                        interruptIdleWorkers();
                    return null;
                }
                // Else retry
            } catch (InterruptedException ie) {
                // On interruption, re-check runState
            }
        }
    }

     /**
     * Performs bookkeeping for an exiting worker thread.
     * @param w the worker
     */
     //记录运行任务数量,将工作线程移除。当poolSize为0是则尝试关闭线程池
    void workerDone(Worker w) {
        final ReentrantLock mainLock = this.mainLock;
        mainLock.lock();
        try {
            completedTaskCount += w.completedTasks;
            workers.remove(w);
            if (--poolSize == 0)
                tryTerminate();
        } finally {
            mainLock.unlock();
        }
    }

 

 通过上述代码,总结下四个keyword的使用方法

  • corePoolSize 核心线程数量

线程保有量,线程池总永久保存运行线程的数量

  • maximumPoolSize 最大线程数量

最大线程量,线程最多不能超过此属性设置的数量,当大于线程保有量后,会新启动线程来满足线程运行。

  • 线程存活时间

获取队列中任务的超时时间。当阈值时间内无法获取线程,则会销毁处理线程,前提是线程数量在corePoolSize 以上

  • 运行队列

运行队列是针对任务的缓存,任务在提交至线程池时。都会压入到运行队列中。所以这里大家最好设置下队列的上限。防止溢出

 

ThreadPoolExecuter的几种实现

 

  public static ExecutorService newCachedThreadPool() {
        return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
                                      60L, TimeUnit.SECONDS,
                                      new SynchronousQueue<Runnable>());
    }
  •  CachedThreadPool 运行线程不固定,
     优点:能够把新增任务所有缓存在一起,
     坏处:仅仅能用在短时间完毕的任务 (占用时间较长的操作能够导致线程数无限增大,系统资源耗尽)
public static ExecutorService newSingleThreadExecutor() {
        return new FinalizableDelegatedExecutorService
            (new ThreadPoolExecutor(1, 1,
                                    0L, TimeUnit.MILLISECONDS,
                                    new LinkedBlockingQueue<Runnable>()));
    }
  •  单线程线程池
       优点:针对单cpu,单线程避免系统资源的抢夺
       坏处:多cpu多线程时。不能全然利用cpu资源
public static ExecutorService newFixedThreadPool(int nThreads) {
        return new ThreadPoolExecutor(nThreads, nThreads,
                                      0L, TimeUnit.MILLISECONDS,
                                      new LinkedBlockingQueue<Runnable>(),
                                      threadFactory);
    }
  •     固定长度线程池
        优点:线程数量固定,不会存在线程反复初始化
        坏处:没有对队列大小进行限制,线程初始化后,再也不能回收线程资源

 

 

版权声明:本文博客原创文章。博客,未经同意,不得转载。

你可能感兴趣的:(ThreadPoolExecutor原理和使用)