Pytorch十二讲 RNN基础(部分笔记)

第12讲 循环神经网络基础篇(部分笔记)

B站 刘二大人 传送门:《PyTorch深度学习实践》完结合集

仅把RNN代码复制了过来

################################################################################
# 刘二大人 RNN基础test1
# 1.RNNCELL
################################################################################
import torch
batch_size = 1
seq_len = 3
input_size = 4
hidden_size = 2
cell = torch.nn.RNNCell(input_size=input_size, hidden_size=hidden_size)

dataset = torch.randn(seq_len, batch_size, input_size)
hidden = torch.zeros(batch_size, hidden_size)
for idx, input in enumerate(dataset):
    print('='*20, idx, '='*20)
    print('Input size:', input.shape)
    hidden = cell(input, hidden)          # 当前时刻的输入及hidden
    # input of shape (batch_size, input_size)
    # hidden of shape (batch_size, hidden_size)  输入和输出隐层h维度相同

    print('outputs size:', hidden.shape)
    print(hidden)
################################################################################
# 刘二大人@RNN基础test1
# 1.RNNCELL
# 2.RNN
################################################################################
import torch
batch_size = 1
seq_len = 3
input_size = 4
hidden_size = 2
num_layers = 1

cell = torch.nn.RNN(input_size=input_size, hidden_size=hidden_size, num_layers=num_layers)


inputs = torch.randn(seq_len, batch_size, input_size)
hidden = torch.zeros(num_layers, batch_size, hidden_size)

out, hidden = cell(inputs, hidden)


print('output size:', out.shape)
print('output:', out)
print('hidden size:', hidden.shape)
print('hidden:', hidden)
################################################################################
# 刘二大人@RNN基础test1
# 1.RNNCELL
# 2.RNN
# 3.Use RNNcell
################################################################################
import torch
input_size = 4
hidden_size = 4
batch_size = 1

idx2char = ['e', 'h', 'l', 'o']
x_data = [1, 0, 2, 2, 3]
y_data = [3, 1, 2, 3, 2]
one_hot_lookup = [[1, 0, 0, 0],
                  [0, 1, 0, 0],
                  [0, 0, 1, 0],
                  [0, 0, 0, 1]]

x_one_hot = [one_hot_lookup[x] for x in x_data]
inputs = torch.Tensor(x_one_hot).view(-1, batch_size, input_size)
labels = torch.LongTensor(y_data).view(-1, 1)

class Model(torch.nn.Module):
    def __init__(self, input_size, hidden_size, batch_size):
        super(Model, self).__init__()
        self.batch_size = batch_size
        self.input_size = input_size
        self.hidden_size = hidden_size
        self.rnncell = torch.nn.RNNCell(input_size=self.input_size, hidden_size=self.hidden_size)

    def forward(self, input, hidden):
        hidden = self.rnncell(input, hidden)
        return hidden

    def init_hidden(self):
        return torch.zeros(self.batch_size, self.hidden_size)

net = Model (input_size, hidden_size, batch_size)

criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(net.parameters(), lr=0.1)

for epoch in range (15):
    loss = 0
    optimizer.zero_grad()
    hidden = net.init_hidden()
    print('Predicted string:', end='')
    for input, label in zip (inputs, labels):
        hidden = net(input, hidden)
        loss += criterion(hidden, label)
        _, idx = hidden.max(dim=-1)
        print(idx2char[idx.item()], end='')
        # print(idx)
    loss.backward()
    optimizer.step()
    print(',Epoch [%d/15] loss=%.4f' % (epoch+1, loss.item()))
################################################################################
# 刘二大人@RNN基础test1
# 1.RNN CELL
# 2.RNN
# 3.Using RNN Cell
# 4.Using RNN Module
################################################################################

import torch
input_size = 4
hidden_size = 4
batch_size = 1
seq_len = 5
num_layers = 1

idx2char = ['e', 'h', 'l', 'o']
x_data = [1, 0, 2, 2, 3]
y_data = [3, 1, 2, 3, 2]
one_hot_lookup = [[1, 0, 0, 0],
                  [0, 1, 0, 0],
                  [0, 0, 1, 0],
                  [0, 0, 0, 1]]
x_one_hot = [one_hot_lookup[x] for x in x_data]

inputs = torch.Tensor(x_one_hot).view(seq_len, batch_size, input_size)
labels = torch.LongTensor(y_data)

class Model(torch.nn.Module):
    def __init__(self, input_size, hidden_size, batch_size, num_layers):
        super(Model, self).__init__()
        self.num_layers = num_layers
        self.batch_size = batch_size
        self.input_size = input_size
        self.hidden_size = hidden_size
        self.rnn = torch.nn.RNN(input_size=self.input_size, hidden_size=self.hidden_size, num_layers=num_layers)


    def forward(self, input):
        hidden = torch.zeros(self.num_layers, self.batch_size, self.hidden_size)
        out, _ = self.rnn(input, hidden)
        return out.view(-1, self.hidden_size)

    # def init_hidden(self):
    #     return torch.zeros(self.batch_size, self.hidden_size)

net = Model (input_size, hidden_size, batch_size, num_layers)

criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(net.parameters(), lr=0.1)

for epoch in range(15):
    optimizer.zero_grad()
    outputs = net(inputs)
    loss = criterion(outputs, labels)
    loss.backward()
    optimizer.step()

    _, idx = outputs.max(dim=1)
    idx = idx.data.numpy()
    print('Predicted:', ''.join([idx2char[x] for x in idx]), end='')
    print(',Epoch [%d/15] loss = %.3f' % (epoch + 1, loss.item()))

你可能感兴趣的:(Pytorch,RNN,pytorch,深度学习,rnn)